Artículo
Matrix-valued orthogonal polynomials related to the quantum analogue of (SU (2) × SU (2) , diag)
Fecha de publicación:
06/2017
Editorial:
Springer
Revista:
Ramanujan Journal
ISSN:
1382-4090
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Matrix-valued spherical functions related to the quantum symmetric pair for the quantum analogue of (SU (2) × SU (2) , diag) are introduced and studied in detail. The quantum symmetric pair is given in terms of a quantised universal enveloping algebra with a coideal subalgebra. The matrix-valued spherical functions give rise to matrix-valued orthogonal polynomials, which are matrix-valued analogues of a subfamily of Askey–Wilson polynomials. For these matrix-valued orthogonal polynomials, a number of properties are derived using this quantum group interpretation: the orthogonality relations from the Schur orthogonality relations, the three-term recurrence relation and the structure of the weight matrix in terms of Chebyshev polynomials from tensor product decompositions, and the matrix-valued Askey–Wilson type q-difference operators from the action of the Casimir elements. A more analytic study of the weight gives an explicit LDU-decomposition in terms of continuous q-ultraspherical polynomials. The LDU-decomposition gives the possibility to find explicit expressions of the matrix entries of the matrix-valued orthogonal polynomials in terms of continuous q-ultraspherical polynomials and q-Racah polynomials.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
N. Aldenhoven; Koelink, Hendrik Tjerk; Román, Pablo Manuel; Matrix-valued orthogonal polynomials related to the quantum analogue of (SU (2) × SU (2) , diag); Springer; Ramanujan Journal; 43; 2; 6-2017; 243-311
Compartir
Altmétricas