Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Adaptive matrix metrics for molecular descriptor assessment in QSPR classification

Soto, Axel JuanIcon ; Strickert, Marc; Vazquez, Gustavo EstebanIcon
Fecha de publicación: 03/2010
Editorial: Chemistry Central
Revista: Journal of Cheminformatics
ISSN: 1758-2946
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

QSPR methods represent a useful approach in the drug discovery process, since they allow to predict in advance biological or physicochemical properties of a candidate drug. For this goal, it is necessary that the QSPR method be as accurate as possible to provide reliable predictions. Moreover, the selection of the molecular descriptors is an important task to create QSPR prediction models of low complexity which, at the same time, provide accurate predictions. In this work, a matrix-based method is used to transform the original data space of chemical compounds into an alternative space where compounds with different target properties can be better separated. For using this approach, QSPR is considered as a classification problem. The advantage of using adaptive matrix metrics is twofold: it can be used to identify important molecular descriptors and at the same time it allows improving the classification accuracy. A recently proposed method making use of this concept is extended to multi-class data. The new method is related to linear discriminant analysis and shows better results at yet higher computational costs. An application for relating chemical descriptors to hydrophobicity property shows promising results.
Palabras clave: Adaptive Matrix Metrics , Qsar
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 145.6Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/62306
DOI: https://dx.doi.org/10.1186/1758-2946-2-S1-P47
URL: https://jcheminf.biomedcentral.com/articles/10.1186/1758-2946-2-S1-P47
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Soto, Axel Juan; Strickert, Marc; Vazquez, Gustavo Esteban; Adaptive matrix metrics for molecular descriptor assessment in QSPR classification; Chemistry Central; Journal of Cheminformatics; 2; s1; 3-2010; 47-47
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES