Mostrar el registro sencillo del ítem

dc.contributor.author
Verdinelli, Valeria  
dc.contributor.author
Juan, Alfredo  
dc.contributor.author
Marchetti, Jorge Mario  
dc.contributor.author
German, Estefania  
dc.date.available
2018-10-12T14:00:44Z  
dc.date.issued
2016-06  
dc.identifier.citation
Verdinelli, Valeria; Juan, Alfredo; Marchetti, Jorge Mario; German, Estefania; A microscopic level insight into Pt doped TiZn (001) surface for hydrogen energy storage usage; Royal Society of Chemistry; RSC Advances; 6; 77; 6-2016; 73566-73575  
dc.identifier.issn
2046-2069  
dc.identifier.uri
http://hdl.handle.net/11336/62287  
dc.description.abstract
The interaction of hydrogen and platinum with B2-TiZn (001) surface was studied by means of spin-polarized density functional theory (DFT) calculations. H and Pt on TiZn adsorption energies were calculated taking into account high symmetry adsorption sites. Both the adatoms prefer to be adsorbed on the hollow site where the higher coordination number allows them to minimize the repulsion among the overlapping charge densities of them and the surface. Furthermore, the influence of pre-adsorbed Pt on the H adsorption was analyzed in detail. It was found that this process is enhanced in Pt doped TiZn surface. The electronic structures and changes in the chemical bonding for both the adsorbates on the Ti alloy surface were computed by density of states (DOS) and overlap population (OP) methods, concluding that 3dx2-y2, 3dz2 and 3pz Ti, 5pz Pt orbitals play an important role in H adsorption, as well as it was deduced that the strong overlap between Pt and Ti orbitals allows H atoms to bond more effectively on the surface. Bader's analysis revealed that H and Pt act as electron acceptors, whereas surface Ti-atoms act as electron donors during the H adsorption process.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Royal Society of Chemistry  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc/2.5/ar/  
dc.subject
Dft  
dc.subject
Hydrogen  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A microscopic level insight into Pt doped TiZn (001) surface for hydrogen energy storage usage  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-10-08T17:58:27Z  
dc.journal.volume
6  
dc.journal.number
77  
dc.journal.pagination
73566-73575  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Cambridge  
dc.description.fil
Fil: Verdinelli, Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina  
dc.description.fil
Fil: Juan, Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina  
dc.description.fil
Fil: Marchetti, Jorge Mario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Norwegian University of Life Sciences; Noruega  
dc.description.fil
Fil: German, Estefania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina  
dc.journal.title
RSC Advances  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1039/C6RA12964A  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/Content/ArticleLanding/2016/RA/C6RA12964A