Mostrar el registro sencillo del ítem

dc.contributor.author
Lee, E.  
dc.contributor.author
Brachet, M. E.  
dc.contributor.author
Pouquet, A.  
dc.contributor.author
Mininni, Pablo Daniel  
dc.contributor.author
Rosenberg, Duane  
dc.date.available
2018-10-11T16:54:14Z  
dc.date.issued
2008-12  
dc.identifier.citation
Lee, E.; Brachet, M. E.; Pouquet, A.; Mininni, Pablo Daniel; Rosenberg, Duane; Paradigmatic flow for small-scale magnetohydrodynamics: Properties of the ideal case and the collision of current sheets; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 78; 6; 12-2008; 664011-664017  
dc.identifier.issn
1539-3755  
dc.identifier.uri
http://hdl.handle.net/11336/62206  
dc.description.abstract
We propose two sets of initial conditions for magnetohydrodynamics (MHD) in which both the velocity and the magnetic fields have spatial symmetries that are preserved by the dynamical equations as the system evolves. When implemented numerically they allow for substantial savings in CPU time and memory storage requirements for a given resolved scale separation. Basic properties of these Taylor-Green flows generalized to MHD are given, and the ideal nondissipative case is studied up to the equivalent of 20483 grid points for one of these flows. The temporal evolution of the logarithmic decrements δ of the energy spectrum remains exponential at the highest spatial resolution considered, for which an acceleration is observed briefly before the grid resolution is reached. Up to the end of the exponential decay of δ, the behavior is consistent with a regular flow with no appearance of a singularity. The subsequent short acceleration in the formation of small magnetic scales can be associated with a near collision of two current sheets driven together by magnetic pressure. It leads to strong gradients with a fast rotation of the direction of the magnetic field, a feature also observed in the solar wind. © 2008 The American Physical Society.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Paradigmatic flow for small-scale magnetohydrodynamics: Properties of the ideal case and the collision of current sheets  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-10-05T19:12:20Z  
dc.journal.volume
78  
dc.journal.number
6  
dc.journal.pagination
664011-664017  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Lee, E.. National Center for Atmospheric Research; Estados Unidos  
dc.description.fil
Fil: Brachet, M. E.. Ecole Normale Supérieure; Francia. National Center for Atmospheric Research; Estados Unidos  
dc.description.fil
Fil: Pouquet, A.. National Center for Atmospheric Research; Estados Unidos  
dc.description.fil
Fil: Mininni, Pablo Daniel. Universidad de Buenos Aires; Argentina. National Center for Atmospheric Research; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.description.fil
Fil: Rosenberg, Duane. National Center for Atmospheric Research; Estados Unidos  
dc.journal.title
Physical Review E: Statistical, Nonlinear and Soft Matter Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevE.78.066401