Mostrar el registro sencillo del ítem

dc.contributor.author
Capriotti, Santiago  
dc.date.available
2018-10-10T17:25:36Z  
dc.date.issued
2010-03  
dc.identifier.citation
Capriotti, Santiago; Dirac constraints in field theory and exterior differential systems; American Institute of Mathematical Sciences; The Journal of Geometric Mechanics; 2; 1; 3-2010; 1-50  
dc.identifier.issn
1941-4889  
dc.identifier.uri
http://hdl.handle.net/11336/62081  
dc.description.abstract
The usual treatment of a (first order) classical field theory such as electromagnetism has a little drawback: It has a primary constraint submanifold that arise from the fact that the dynamics is governed by the antisymmetric part of the jet variables. So it is natural to ask if there exists a formulation of this kind of field theories which avoids this problem, retaining the versatility of the known approach. The following paper deals with a family of variational problems, namely, the so called non standard variational problems, which intends to capture the data necessary to set up such a formulation for field theories. A multisymplectic structure for the family of non standard variational problems will be found, and it will be related with the (pre)symplectic structure arising on the space of sections of the bundle of fields. In this setting the Dirac theory of constraints will be studied, obtaining among other things a novel characterization of the constraint manifold which arises in this theory, as generators of an exterior differential system associated to the equations of motion and the chosen slicing. Several examples of application of this formalism will be discussed.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Mathematical Sciences  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Dirac Constraints  
dc.subject
Exterior Differential Systems  
dc.subject
Classical Field Theory  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Dirac constraints in field theory and exterior differential systems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-18T15:03:56Z  
dc.journal.volume
2  
dc.journal.number
1  
dc.journal.pagination
1-50  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Springfield  
dc.description.fil
Fil: Capriotti, Santiago. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina  
dc.journal.title
The Journal of Geometric Mechanics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.3934/jgm.2010.2.1  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.aimsciences.org/journals/displayArticles.jsp?paperID=5153