Artículo
Distribution of zeros in the rough geometry of fluctuating interfaces
Fecha de publicación:
15/04/2016
Editorial:
American Physical Society
Revista:
Physical Review E
ISSN:
2470-0053
e-ISSN:
1063-651X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study numerically the correlations and the distribution of intervals between successive zeros in the fluctuating geometry of stochastic interfaces, described by the Edwards-Wilkinson equation. For equilibrium states we find that the distribution of interval lengths satisfies a truncated Sparre-Andersen theorem. We show that boundary-dependent finite-size effects induce nontrivial correlations, implying that the independent interval property is not exactly satisfied in finite systems. For out-of-equilibrium nonstationary states we derive the scaling law describing the temporal evolution of the density of zeros starting from an uncorrelated initial condition. As a by-product we derive a general criterion of the von Neumann's type to understand how discretization affects the stability of the numerical integration of stochastic interfaces. We consider both diffusive and spatially fractional dynamics. Our results provide an alternative experimental method for extracting universal information of fluctuating interfaces such as domain walls in thin ferromagnets or ferroelectrics, based exclusively on the detection of crossing points.
Palabras clave:
Interfaces
,
Thermal Fluctuations
,
Zeros
,
Roughness
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Zamorategui, Arturo L.; Lecomte, Vivien; Kolton, Alejandro Benedykt; Distribution of zeros in the rough geometry of fluctuating interfaces; American Physical Society; Physical Review E; 93; 4; 15-4-2016; 42118/1-42118/11
Compartir
Altmétricas