Artículo
Gentzen-Style Sequent Calculus for Semi-intuitionistic Logic
Fecha de publicación:
12/2016
Editorial:
Springer
Revista:
Studia Logica
ISSN:
0039-3215
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The variety SH of semi-Heyting algebras was introduced by H. P. Sankappanavar (in: Proceedings of the 9th “Dr. Antonio A. R. Monteiro” Congress, Universidad Nacional del Sur, Bahía Blanca, 2008) [13] as an abstraction of the variety of Heyting algebras. Semi-Heyting algebras are the algebraic models for a logic HsH, known as semi-intuitionistic logic, which is equivalent to the one defined by a Hilbert style calculus in Cornejo (Studia Logica 98(1–2):9–25, 2011) [6]. In this article we introduce a Gentzen style sequent calculus GsH for the semi-intuitionistic logic whose associated logic GsH is the same as HsH. The advantage of this presentation of the logic is that we can prove a cut-elimination theorem for GsH that allows us to prove the decidability of the logic. As a direct consequence, we also obtain the decidability of the equational theory of semi-Heyting algebras.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Castaño, Diego Nicolás; Cornejo, Juan Manuel; Gentzen-Style Sequent Calculus for Semi-intuitionistic Logic; Springer; Studia Logica; 104; 6; 12-2016; 1245-1265
Compartir
Altmétricas