Mostrar el registro sencillo del ítem

dc.contributor.author
Duran, Alicia I.  
dc.contributor.author
Signorelli, Javier Walter  
dc.contributor.author
Celentano, Diego J.  
dc.contributor.author
Cruchaga, Marcela  
dc.contributor.author
François, Manuel  
dc.date.available
2016-06-10T18:34:46Z  
dc.date.issued
2015-03  
dc.identifier.citation
Duran, Alicia I.; Signorelli, Javier Walter; Celentano, Diego J.; Cruchaga, Marcela; François, Manuel; Experimental and numerical analysis on the formability of a heat treated AA1100 aluminum alloy sheet; Springer; Journal of Materials Engineering and Performance; 24; 10; 3-2015; 4156-4170  
dc.identifier.issn
1059-9495  
dc.identifier.uri
http://hdl.handle.net/11336/6157  
dc.description.abstract
The objective of this work is to experimentally and numerically determine the influence of plastic anisotropy on the forming limit curve (FLC) for a heat-treated (300 C-1 h) AA1100 aluminum alloy sheet. The FLCs were obtained by the Nakajima test, where the anisotropy effect on the FLC was evaluated using hourglass-type samples taken at 0, 45, and 90 with respect to the sheet rolling direction. The effect of crystal orientations on the FLC is investigated using three micro-macro averaging schemes coupled to a Marciniak and Kuczynski (MK) analysis: the tangent viscoplastic self-consistent (VPSC), the tuned strength aVPSC, and the full-constraint Taylor model. The predicted limit strains in the left-hand side of the FLC agree well with experimental measurements along the three testing directions, while differences are found under biaxial stretching modes. Particularly, MK-VPSC predicts an unexpected limit strain profile in the right-hand side of the FLC for samples tested along the transverse direction. Only MK-aVPSC, with a tuning factor of 0.2, predicts satisfactorily the set of FLC measurements. Finally, the correlation of the predicted limit strains with the predicted yield surface by each model was also discussed.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Marciniak And Kuczynski  
dc.subject
Sheet Formability  
dc.subject
Viscoplastic Polycrystalline Self-Consistent (Vpsc) Model  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Experimental and numerical analysis on the formability of a heat treated AA1100 aluminum alloy sheet  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-06-01T13:49:08Z  
dc.journal.volume
24  
dc.journal.number
10  
dc.journal.pagination
4156-4170  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Duran, Alicia I.. Pontificia Universidad Católica de Chile; Chile  
dc.description.fil
Fil: Signorelli, Javier Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina  
dc.description.fil
Fil: Celentano, Diego J.. Pontificia Universidad Católica de Chile; Chile  
dc.description.fil
Fil: Cruchaga, Marcela. Universidad de Santiago de Chile; Chile  
dc.description.fil
Fil: François, Manuel. Université de Technologie de Troyes; Francia  
dc.journal.title
Journal of Materials Engineering and Performance  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs11665-015-1684-x  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/10.1007/s11665-015-1684-x  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11665-015-1684-x