Artículo
Design of devices and manufacturing of Fe-Mn-Si shape memory alloy couplings
Fecha de publicación:
05/2015
Editorial:
Elsevier
Revista:
Procedia Materials Science
ISSN:
2211-8128
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We have studied an Fe-15Mn-5Si-9Cr-5Ni (wt.%) shape memory alloy produced by casting in sand moulds. After processing by rolling at 800° C followed by annealing at 650° C, the structure contains a high density of stacking faults and high strength austenite. When a stress is applied to the material, a reversible martensitic transformation activates before the austenite deforms plastically. Under these conditions, the material recovers about 95% of a 3% permanent deformation. The mechanical properties were measured by tensile tests, giving a yield strength of 350 MPa, an ultimate strength of 880 MPa and 16% total elongation to fracture. Furthermore, the alloy has good weldability using the GTAW method. No macro or micro defects were observed, but there is a 15% deterioration of the shape memory properties due to a heat affected (HAZ) and welded zone (WZ), as measured with bend specimens. In this work, we studied the formability of the material, finding very good performance in simple bending tests. We also present a method for manufacturing couplings by forming and welding, designing forming devices and obtaining the first prototypes. Finally, we evaluated the shape memory properties of the manufactured couplings, finding 83% recovery of a 3.6% diameter expansion. This amount of recovery is suitable for various industrial applications.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos(IFIR)
Articulos de INST.DE FISICA DE ROSARIO (I)
Articulos de INST.DE FISICA DE ROSARIO (I)
Citación
Druker, Ana Velia; Perotti, A.; Esquivel, Isidro Gabriel; Malarria, Jorge Alberto; Design of devices and manufacturing of Fe-Mn-Si shape memory alloy couplings; Elsevier; Procedia Materials Science; 8; 5-2015; 878-885
Compartir
Altmétricas