Mostrar el registro sencillo del ítem
dc.contributor.author
Giribet, Gaston Enrique
dc.contributor.author
Simeone, Claudio Mauricio
dc.date.available
2018-09-28T15:39:41Z
dc.date.issued
2005-12
dc.identifier.citation
Giribet, Gaston Enrique; Simeone, Claudio Mauricio; Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation; World Scientific; International Journal of Modern Physics A; 20; 20-21; 12-2005; 4821-4862
dc.identifier.issn
0217-751X
dc.identifier.uri
http://hdl.handle.net/11336/61218
dc.description.abstract
We study a class of solutions to the SL(2, ℝ)k Knizhnik-Zamolodchikov equation. First, logarithmic solutions which represent four-point correlation functions describing string scattering processes on three-dimensional anti-de Sitter space are discussed. These solutions satisfy the factorization ansatz and include logarithmic dependence on the SL(2, ℝ)-isospin variables. Different types of logarithmic singularities arising are classified and the interpretation of these is discussed. The logarithms found here fit into the usual pattern of the structure of four-point function of other examples of AdS/CFT correspondence. Composite states arising in the intermediate channels can be identified as the phenomena responsible for the appearance of such singularities in the four-point correlation functions. In addition, logarithmic solutions which are related to nonperturbative (finite k) effects are found. By means of the relation existing between four-point functions in Wess-Zumino-Novikov-Witten model formulated on SL(2, ℝ) and certain five-point functions in Liouville quantum conformal field theory, we show how the reflection symmetry of Liouville theory induces particular ℤ2 symmetry transformations on the WZNW correlators. This observation allows to find relations between different logarithmic solutions. This Liouville description also provides a natural explanation for the appearance of the logarithmic singularities in terms of the operator product expansion between degenerate and puncture fields. © World Scientific Publishing Company.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
World Scientific
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Ads/Cft
dc.subject
Conformal Field Theory
dc.subject
String Theory
dc.subject.classification
Astronomía
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-27T16:12:37Z
dc.journal.volume
20
dc.journal.number
20-21
dc.journal.pagination
4821-4862
dc.journal.pais
Singapur
dc.journal.ciudad
Singapur
dc.description.fil
Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
dc.description.fil
Fil: Simeone, Claudio Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
dc.journal.title
International Journal of Modern Physics A
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1142/S0217751X05021270
Archivos asociados