Artículo
Removal of heavy metals from simulated wastewater by in situ formation of layered double hydroxides
Fecha de publicación:
10/12/2016
Editorial:
Elsevier Science Sa
Revista:
Chemical Engineering Journal
ISSN:
1385-8947
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Heavy metal removal from wastewater is an important environmental issue. Sorption by layered double hydroxides (LDHs) and precipitation in alkaline media are two of the main remediation techniques for these pollutants. Here, both processes are compared, with emphasis on the mechanisms involved and the solids obtained as residues. A heavy metal ion solution with high sulfate concentration was used as a simulated wastewater. It was treated with a carbonate-containing Mg-Al LDH to study sorption processes, while alkalization in the presence of Mg2+ ions was used to produce LDH in situ precipitation. The removal capacity of these processes was analyzed and the solids obtained upon remediation were characterized by PXRD patterns and FT-IR spectra. The obtained results were related to the removal mechanisms, the solubility products of heavy metal hydroxides and their capacity to produce LDH phases. High Cu2+ removal capacities were obtained in all cases, while those of Pb2+ and Zn2+ ions depended on the remediation procedure and factors such as Mg2+ ions concentration and final pH. Apart from Pb2+ ions, the heavy metal precipitated as LDH phases, which presented higher stability than simple heavy metal hydroxides and prevented Zn2+ mobilization in basic media.
Palabras clave:
Heavy Metal
,
Layered Double Hydroxide
,
Mechanism
,
Precipitation
,
Sorption
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INFIQC)
Articulos de INST.DE INVESTIGACIONES EN FISICO- QUIMICA DE CORDOBA
Articulos de INST.DE INVESTIGACIONES EN FISICO- QUIMICA DE CORDOBA
Citación
Peligro, Francisco R.; Pavlovic, Ivana; Rojas Delgado, Ricardo; Barriga, Cristobalina; Removal of heavy metals from simulated wastewater by in situ formation of layered double hydroxides; Elsevier Science Sa; Chemical Engineering Journal; 306; 10-12-2016; 1035-1040
Compartir
Altmétricas