Mostrar el registro sencillo del ítem

dc.contributor.author
Lucini, María Magdalena  
dc.contributor.author
Frery, Alejandro César  
dc.date.available
2018-09-26T17:45:10Z  
dc.date.issued
2009-07  
dc.identifier.citation
Lucini, María Magdalena; Frery, Alejandro César; Robust principal components for hyperspectral data analysis; Springer; Lecture Notes in Computer Science; 5627 LNCS; 7-2009; 126-135  
dc.identifier.isbn
978-3-642-02610-2  
dc.identifier.issn
0302-9743  
dc.identifier.uri
http://hdl.handle.net/11336/60911  
dc.description.abstract
Remote sensing data present peculiar features and characteristics that may make their statistical processing and analysis a difficult task. Among them, it can be mentioned the volume of data involved, the redundancy, the presence of unexpected values that arise mainly due to noisy pixels and background objects whose responses to the sensor are very different from those of their neighbours. Sometimes, the volume of data and number of variables involved is so large that any statistical analysis becomes unmanageable if data are not condensed in some way. A commonly used method to deal with this situation is Principal Component Analysis (PCA) based on classical statistics: sample mean and covariance matrices. The drawback in using sample covariance or correlation matrices as measures of variability is their high sensitivity to spurious values. In this work we analyse and evaluate the use of some Robust Principal Component techniques and make a comparison of Robust and Classical PCs performances when applied to satellite data provided by the hyperspectral sensor AVIRIS (Airborne Visible/Infrared Imaging Spectrometer). We conclude that some robust approaches are the most reliable and precise when applied as a data reduction technique before performing supervised image classification. © 2009 Springer Berlin Heidelberg.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.relation
Kamel, Mohamed; CampilhoImage, Aurélio (Eds.). Analysis and Recognition. 6th International Conference, ICIAR 2009, Halifax, Canada, July 6-8, 2009. Proceedings  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
IMAGE CLASSIFICATION  
dc.subject
PRINCIPAL COMPONENT ANALYSIS  
dc.subject
ROBUST INFERENCE  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Robust principal components for hyperspectral data analysis  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-18T14:05:54Z  
dc.journal.volume
5627 LNCS  
dc.journal.pagination
126-135  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Lucini, María Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina  
dc.description.fil
Fil: Frery, Alejandro César. Universidade Federal de Alagoas; Brasil  
dc.journal.title
Lecture Notes in Computer Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-642-02611-9_13  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-642-02611-9_13