Mostrar el registro sencillo del ítem
dc.contributor.author
Lucini, María Magdalena
dc.contributor.author
Frery, Alejandro César
dc.date.available
2018-09-26T17:45:10Z
dc.date.issued
2009-07
dc.identifier.citation
Lucini, María Magdalena; Frery, Alejandro César; Robust principal components for hyperspectral data analysis; Springer; Lecture Notes in Computer Science; 5627 LNCS; 7-2009; 126-135
dc.identifier.isbn
978-3-642-02610-2
dc.identifier.issn
0302-9743
dc.identifier.uri
http://hdl.handle.net/11336/60911
dc.description.abstract
Remote sensing data present peculiar features and characteristics that may make their statistical processing and analysis a difficult task. Among them, it can be mentioned the volume of data involved, the redundancy, the presence of unexpected values that arise mainly due to noisy pixels and background objects whose responses to the sensor are very different from those of their neighbours. Sometimes, the volume of data and number of variables involved is so large that any statistical analysis becomes unmanageable if data are not condensed in some way. A commonly used method to deal with this situation is Principal Component Analysis (PCA) based on classical statistics: sample mean and covariance matrices. The drawback in using sample covariance or correlation matrices as measures of variability is their high sensitivity to spurious values. In this work we analyse and evaluate the use of some Robust Principal Component techniques and make a comparison of Robust and Classical PCs performances when applied to satellite data provided by the hyperspectral sensor AVIRIS (Airborne Visible/Infrared Imaging Spectrometer). We conclude that some robust approaches are the most reliable and precise when applied as a data reduction technique before performing supervised image classification. © 2009 Springer Berlin Heidelberg.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.relation
Kamel, Mohamed; CampilhoImage, Aurélio (Eds.). Analysis and Recognition. 6th International Conference, ICIAR 2009, Halifax, Canada, July 6-8, 2009. Proceedings
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
IMAGE CLASSIFICATION
dc.subject
PRINCIPAL COMPONENT ANALYSIS
dc.subject
ROBUST INFERENCE
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Robust principal components for hyperspectral data analysis
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-18T14:05:54Z
dc.journal.volume
5627 LNCS
dc.journal.pagination
126-135
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Lucini, María Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina
dc.description.fil
Fil: Frery, Alejandro César. Universidade Federal de Alagoas; Brasil
dc.journal.title
Lecture Notes in Computer Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-642-02611-9_13
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-642-02611-9_13
Archivos asociados