Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Simultaneous determination of two unknown thermal coefficients through a mushy zone model with an overspecified convective boundary condition

Ceretani, Andrea NoemíIcon ; Tarzia, Domingo AlbertoIcon
Fecha de publicación: 05/2016
Editorial: Pushpa Publishing House
Revista: JP Journal of Heat and Mass Transfer
ISSN: 0973-5763
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

We have considered the simultaneous determination of two unknown thermal coefficients for a semi-infinite material which was under a phase-change process with a mushy zone according to the model of Solomon, Wilson and Alexiades. It was assumed that the material was initially liquid at its melting temperature and that the solidification process began when a heat flux was imposed at the fixed face. The associated free boundary value problem was overspecified with a convective boundary condition aiming at the simultaneous determination of the temperature in the solid region, one of the two free boundaries of the mushy zone and two thermal coefficients. These were chosen among the latent heat by unit mass, the thermal conductivity, the mass density, the specific heat and the two coefficients that characterize the mushy zone. It was assumed that the other free boundary of the mushy zone, the bulk temperature, the heat flux and heat transfer coefficients at the fixed face were known. Depending on the choice of the unknown thermal coefficients, fifteen phase-change problems arose. In this paper, we present those fifteen problems and obtain necessary and sufficient conditions on data for each of them in order to obtain their solutions. We show that there are twelve cases in which it is possible to find a unique solution and that there are infinite solutions for the remaining three cases. Moreover, for each problem, we give explicit formulae for the temperature of the material, the unknown free boundary and the two unknown thermal coefficients.
Palabras clave: Convective Condition , LamÉ-Clapeyron-Stefan Problem , Mushy Zone , Phase-Change , Unknown Thermal Coefficients
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 136.4Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/60875
DOI: https://dx.doi.org/10.17654/HM013020277
URL: http://www.pphmj.com/abstract/9816.htm
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Ceretani, Andrea Noemí; Tarzia, Domingo Alberto; Simultaneous determination of two unknown thermal coefficients through a mushy zone model with an overspecified convective boundary condition; Pushpa Publishing House; JP Journal of Heat and Mass Transfer; 13; 2; 5-2016; 277-301
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES