Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Successful combination of computationally inexpensive GIAO 13C NMR calculations and artificial neural network pattern recognition: a new strategy for simple and rapid detection of structural misassignments

Sarotti, Ariel MarceloIcon
Fecha de publicación: 07/2013
Editorial: Royal Society of Chemistry
Revista: Organic & Biomolecular Chemistry
ISSN: 1477-0520
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Orgánica

Resumen

GIAO NMR chemical shift calculations coupled with trained artificial neural networks (ANNs) have been shown to provide a powerful strategy for simple, rapid and reliable identification of structural misassignments of organic compounds using only one set of both computational and experimental data. The geometry optimization, usually the most time-consuming step in the overall procedure, was carried out using computationally inexpensive methods (MM+, AM1 or HF/3-21G) and the NMR shielding constants at the affordable mPW1PW91/6-31G(d) level of theory. As low quality NMR prediction is typically obtained with such protocols, the decision making was foreseen as a problem of pattern recognition. Thus, given a set of statistical parameters computed after correlation between experimental and calculated chemical shifts the classification was done using the knowledge derived from trained ANNs. The training process was carried out with a set of 200 molecules chosen to provide a wide array of chemical functionalities and molecular complexity, and the results were validated with a set of 26 natural products that had been incorrectly assigned along with their 26 revised structures. The high prediction effectiveness observed makes this method a suitable test for rapid identification of structural misassignments, preventing not only the publication of wrong structures but also avoiding the consequences of such a mistake.
Palabras clave: Giao Nmr 13c Calculations , Artificial Neural Networks , Pattern Recognition , Structuralmissasignments
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 791.9Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/6080
URL: http://pubs.rsc.org/en/content/articlelanding/2013/ob/c3ob40843d
DOI: http://dx.doi.org/10.1039/C3OB40843D
Colecciones
Articulos(IQUIR)
Articulos de INST.DE QUIMICA ROSARIO
Citación
Sarotti, Ariel Marcelo; Successful combination of computationally inexpensive GIAO 13C NMR calculations and artificial neural network pattern recognition: a new strategy for simple and rapid detection of structural misassignments; Royal Society of Chemistry; Organic & Biomolecular Chemistry; 11; 29; 7-2013; 4847-4859
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES