Artículo
Finite dissipation and intermittency in magnetohydrodynamics
Fecha de publicación:
12/2009
Editorial:
American Physical Society
Revista:
Physical Review E: Statistical, Nonlinear and Soft Matter Physics
ISSN:
1539-3755
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We present an analysis of data stemming from numerical simulations of decaying magnetohydrodynamic (MHD) turbulence up to grid resolution of 15363 points and up to Taylor Reynolds number of ∼1200. The initial conditions are such that the initial velocity and magnetic fields are helical and in equipartition, while their correlation is negligible. Analyzing the data at the peak of dissipation, we show that the dissipation in MHD seems to asymptote to a constant as the Reynolds number increases, thereby strengthening the possibility of fast reconnection events in the solar environment for very large Reynolds numbers. Furthermore, intermittency of MHD flows, as determined by the spectrum of anomalous exponents of structure functions of the velocity and the magnetic field, is stronger than that of fluids, confirming earlier results; however, we also find that there is a measurable difference between the exponents of the velocity and those of the magnetic field, reminiscent of recent solar wind observations. Finally, we discuss the spectral scaling laws that arise in this flow. © 2009 The American Physical Society.
Palabras clave:
Magnetohydrodynamics
,
Turbulence
,
Space Physics
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos de INST.DE FISICA DE BUENOS AIRES
Citación
Mininni, Pablo Daniel; Pouquet, A.; Finite dissipation and intermittency in magnetohydrodynamics; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 80; 2; 12-2009; 254011-254014
Compartir
Altmétricas