Artículo
Hecke and sturm bounds for Hilbert modular forms over real quadratic fields
Fecha de publicación:
11/2017
Editorial:
American Mathematical Society
Revista:
Mathematics Of Computation
ISSN:
0025-5718
e-ISSN:
1088-6842
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let K be a real quadratic field and OK its ring of integers. Let Γ be a congruence subgroup of SL2(OK) and M(k1,k2)(Γ) be the finite dimensional space of Hilbert modular forms of weight (k1, k2) for Γ. Given a form f(z) ∈ M(k1,k2)(Γ), how many Fourier coefficients determine it uniquely in such space? This problem was solved by Hecke for classical forms, and Sturm proved its analogue for congruences modulo a prime ideal. The present article solves the same problem for Hilbert modular forms over K. We construct a finite set of indices (which depends on the cusps desingularization of the modular surface attached to Γ) such that the Fourier coefficients of any form in such set determines it uniquely.
Palabras clave:
Sturm Bound
,
Hilbert Modular Forms
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Burgos Gil, Jose Ignacio; Pacetti, Ariel Martín; Hecke and sturm bounds for Hilbert modular forms over real quadratic fields; American Mathematical Society; Mathematics Of Computation; 86; 306; 11-2017; 1949-1978
Compartir
Altmétricas