Mostrar el registro sencillo del ítem
dc.contributor.author
Cornejo, Juan Manuel
dc.contributor.author
Sankappanavar, Hanamantagouda P.
dc.date.available
2018-09-21T23:32:00Z
dc.date.issued
2016-08
dc.identifier.citation
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Semisimple varieties of implication zroupoids; Springer Verlag; Soft Computing - (Print); 20; 8; 8-2016; 3139-3151
dc.identifier.issn
1472-7643
dc.identifier.uri
http://hdl.handle.net/11336/60698
dc.description.abstract
It is a well known fact that Boolean algebras can be defined using only implication and a constant. In fact, in 1934, Bernstein (Trans Am Math Soc 36:876–884, 1934) gave a system of axioms for Boolean algebras in terms of implication only. Though his original axioms were not equational, a quick look at his axioms would reveal that if one adds a constant, then it is not hard to translate his system of axioms into an equational one. Recently, in 2012, the second author of this paper extended this modified Bernstein’s theorem to De Morgan algebras (see Sankappanavar, Sci Math Jpn 75(1):21–50, 2012). Indeed, it is shown in Sankappanavar (Sci Math Jpn 75(1):21–50, 2012) that the varieties of De Morgan algebras, Kleene algebras, and Boolean algebras are term-equivalent, respectively, to the varieties, DM, KL, and BA whose defining axioms use only the implication → and the constant 0. The fact that the identity, herein called (I), occurs as one of the two axioms in the definition of each of the varieties DM, KL and BA motivated the second author of this paper to introduce, and investigate, the variety I of implication zroupoids, generalizing De Morgan algebras. These investigations are continued by the authors of the present paper in Cornejo and Sankappanavar (Implication zroupoids I, 2015), wherein several new subvarieties of I are introduced and their relationships with each other and with the varieties studied in Sankappanavar (Sci Math Jpn 75(1):21–50, 2012) are explored. The present paper is a continuation of Sankappanavar (Sci Math Jpn 75(1):21–50, 2012) and Cornejo and Sankappanavar (Implication zroupoids I, 2015). The main purpose of this paper is to determine the simple algebras in I. It is shown that there are exactly five (nontrivial) simple algebras in I. From this description we deduce that the semisimple subvarieties of I are precisely the subvarieties of the variety generated by these simple I-zroupoids and that they are locally finite. It also follows that the lattice of semisimple subvarieties of I is isomorphic to the direct product of a 4-element Boolean lattice and a 4-element chain.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Verlag
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Implication Zroupoid
dc.subject
Simple Algebra
dc.subject
Boolean Algebra
dc.subject
De Morgan Algebra
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Semisimple varieties of implication zroupoids
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-18T14:23:44Z
dc.identifier.eissn
1433-7479
dc.journal.volume
20
dc.journal.number
8
dc.journal.pagination
3139-3151
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.description.fil
Fil: Sankappanavar, Hanamantagouda P.. State University of New York; Estados Unidos
dc.journal.title
Soft Computing - (Print)
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00500-015-1950-8
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00500-015-1950-8
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1509.08502
Archivos asociados