Mostrar el registro sencillo del ítem
dc.contributor.author
Cornejo, Juan Manuel
dc.contributor.author
Sankappanavar, Hanamantagouda P.
dc.date.available
2018-09-21T23:28:23Z
dc.date.issued
2017-12-01
dc.identifier.citation
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; On derived algebras and subvarieties of implication zroupoids; Springer Verlag Berlín; Soft Computing - (Print); 21; 23; 1-12-2017; 6963-6982
dc.identifier.issn
1472-7643
dc.identifier.uri
http://hdl.handle.net/11336/60697
dc.description.abstract
In 2012, the second author introduced and studied in Sankappanavar (Sci Math Jpn 75(1):21–50, 2012) the variety I of algebras, called implication zroupoids, that generalize De Morgan algebras. An algebra A= ⟨ A, → , 0 ⟩ , where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies: (x→y)→z≈[(z′→x)→(y→z)′]′ and 0 ′ ′≈ 0 , where x′: = x→ 0. The present authors devoted the papers, Cornejo and Sankappanavar (Alegbra Univers, 2016a; Stud Log 104(3):417–453, 2016b. doi:10.1007/s11225-015-9646-8; and Soft Comput: 20:3139–3151, 2016c. doi:10.1007/s00500-015-1950-8), to the investigation of the structure of the lattice of subvarieties of I, and to making further contributions to the theory of implication zroupoids. This paper investigates the structure of the derived algebras Am: = ⟨ A, ∧ , 0 ⟩ and Amj: = ⟨ A, ∧ , ∨ , 0 ⟩ of A∈ I, where x∧y:=(x→y′)′ and x∨y:=(x′∧y as well as the lattice of subvarieties of I. The varieties I2 , 0, RD, SRD, C, CP, A, MC, and CLD are defined relative to I, respectively, by: (I2 , 0) x′ ′≈ x, (RD) (x→ y) → z≈ (x→ z) → (y→ z) , (SRD) (x→ y) → z≈ (z→ x) → (y→ z) , (C) x→ y≈ y→ x, (CP) x→ y′≈ y→ x′, (A) (x→ y) → z≈ x→ (y→ z) , (MC) x∧ y≈ y∧ x, (CLD) x→ (y→ z) ≈ (x→ z) → (y→ x). The purpose of this paper is two-fold. Firstly, we show that, for each A∈ I, Am is a semigroup. From this result, we deduce that, for A∈ I2 , 0∩ MC, the derived algebra Amj is a distributive bisemilattice and is also a Birkhoff system. Secondly, we show that CLD⊂ SRD⊂ RD and C⊂CP∩A∩MC∩CLD, both of which are much stronger results than were announced in Sankappanavar (Sci Math Jpn 75(1):21–50, 2012).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Verlag Berlín
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Birkhoff System
dc.subject
Derived Algebras
dc.subject
Distributive Bisemilattice
dc.subject
Implication Zroupoid
dc.subject
Left Distributive Law
dc.subject
Right Distributive Law
dc.subject
Semigroup
dc.subject
Subvarieties
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
On derived algebras and subvarieties of implication zroupoids
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-18T14:23:42Z
dc.identifier.eissn
1433-7479
dc.journal.volume
21
dc.journal.number
23
dc.journal.pagination
6963-6982
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.description.fil
Fil: Sankappanavar, Hanamantagouda P.. State University of New York; Estados Unidos
dc.journal.title
Soft Computing - (Print)
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00500-016-2421-6
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00500-016-2421-6
Archivos asociados