Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Order in Implication Zroupoids

Cornejo, Juan ManuelIcon ; Sankappanavar, Hanamantagouda P.
Fecha de publicación: 06/2016
Editorial: Springer
Revista: Studia Logica
ISSN: 0039-3215
e-ISSN: 1572-8730
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

The variety I of implication zroupoids (using a binary operation → and a constant 0) was defined and investigated by Sankappanavar (Scientia Mathematica Japonica 75(1):21–50, 2012), as a generalization of De Morgan algebras. Also, in Sankappanavar (Scientia Mathematica Japonica 75(1):21–50, 2012), several subvarieties of I were introduced, including the subvariety I2 ,0, defined by the identity: x″≈ x, which plays a crucial role in this paper. Some more new subvarieties of I are studied in Cornejo and Sankappanavar (Algebra Univ, 2015) that includes the subvariety SL of semilattices with a least element 0. An explicit description of semisimple subvarieties of I is given in Cornejo and Sankappanavar (Soft Computing, 2015). It is a well known fact that there is a partial order (denote it by ⊑) induced by the operation ∧, both in the variety SL of semilattices with a least element and in the variety DM of De Morgan algebras. As both SL and DM are subvarieties of I and the definition of partial order can be expressed in terms of the implication and the constant, it is but natural to ask whether the relation ⊑ on I is actually a partial order in some (larger) subvariety of I that includes both SL and DM. The purpose of the present paper is two-fold: Firstly, a complete answer is given to the above mentioned problem. Indeed, our first main theorem shows that the variety I2,0 is a maximal subvariety of I with respect to the property that the relation ⊑ is a partial order on its members. In view of this result, one is then naturally led to consider the problem of determining the number of non-isomorphic algebras in I2,0 that can be defined on an n-element chain (herein called I2,0-chains), n being a natural number. Secondly, we answer this problem in our second main theorem which says that, for each n∈ N, there are exactly n nonisomorphic I2, 0-chains of size n.
Palabras clave: Boolean Algebra , De Morgan Algebra , Finite I2 , 0-Chain , Implication Zroupoid , Partial Order , The Variety I2 , 0
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 335.1Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/60695
URL: https://link.springer.com/article/10.1007/s11225-015-9646-8
DOI: http://dx.doi.org/10.1007/s11225-015-9646-8
URL: https://arxiv.org/abs/1510.00892
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Order in Implication Zroupoids; Springer; Studia Logica; 104; 3; 6-2016; 417-453
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES