Mostrar el registro sencillo del ítem
dc.contributor.author
Fernández, Érica Soledad
dc.contributor.author
Salomone, Hector Enrique
dc.contributor.author
Chiotti, Omar Juan Alfredo
dc.date.available
2018-09-20T18:11:40Z
dc.date.issued
2012-06
dc.identifier.citation
Fernández, Érica Soledad; Salomone, Hector Enrique; Chiotti, Omar Juan Alfredo; A model driven development approach based on a reference model for predicting disruptive events in a supply process; Elsevier Science; Computers In Industry; 63; 5; 6-2012; 482-499
dc.identifier.issn
0166-3615
dc.identifier.uri
http://hdl.handle.net/11336/60492
dc.description.abstract
Due to the impossibility of predicting with certainty the occurrence of disruptive events, buffers defined to obtain a robust schedule could not absorb all the changes. Then, local modifications of the schedule are usually performed to avoid a new planning task. For this task, obtaining disruptive event information in advance can help to make better decisions. As a result, ability to predict disruptive events that affect the execution of the supply process an order represents is required. With the objective of satisfying this requirement, this work proposes a model driven development approach based on a reference model to automate the generation of the monitoring model of a supply process able to anticipate the occurrence of a disruptive event by monitoring variables that can explain it. The approach proposes both a reference model to represent the monitoring model independently of the implementation platform, and a specific model to represent the monitoring model with the particular language of the implementation platform. An engine based on transformation rules allows automating the generation of a platform dependent monitoring model from an instance of a platform independent metamodel. The monitoring component of a SCEM system has been developed, which implements the transformation engine as a Bayesian Network model, and uses an appropriate tool to execute it. For an empirical validation of the model three case studies are presented.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
SCEM SYSTEMS
dc.subject
DISRUPTIVE EVENTS
dc.subject
EVENT MANAGEMENT
dc.subject
MONITORING SYSTEM
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
A model driven development approach based on a reference model for predicting disruptive events in a supply process
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-18T16:22:17Z
dc.journal.volume
63
dc.journal.number
5
dc.journal.pagination
482-499
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Fernández, Érica Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.description.fil
Fil: Salomone, Hector Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.description.fil
Fil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación y Desarrollo de Ingeniería en Sistemas de Información; Argentina
dc.journal.title
Computers In Industry
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compind.2012.02.002
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166361512000279
Archivos asociados