Mostrar el registro sencillo del ítem

dc.contributor.author
Mendoza, Marcelo  
dc.contributor.author
Marin, Mauricio  
dc.contributor.author
Gil Costa, Graciela Verónica  
dc.contributor.author
Ferrarotti, Flavio  
dc.date.available
2018-09-20T17:30:28Z  
dc.date.issued
2016-11  
dc.identifier.citation
Mendoza, Marcelo; Marin, Mauricio; Gil Costa, Graciela Verónica; Ferrarotti, Flavio; Reducing hardware hit by queries in web search engines; Pergamon-Elsevier Science Ltd; Information Processing & Management; 52; 6; 11-2016; 1031-1052  
dc.identifier.issn
0306-4573  
dc.identifier.uri
http://hdl.handle.net/11336/60466  
dc.description.abstract
In this paper, we introduce a new collection selection strategy to be operated in search engines with document partitioned indexes. Our method involves the selection of those document partitions that are most likely to deliver the best results to the formulated queries, reducing the number of queries that are submitted to each partition. This method employs learning algorithms that are capable of ranking the partitions, maximizing the probability of recovering documents with high gain. The method operates by building vector representations of each partition on the term space that is spanned by the queries. The proposed method is able to generalize to new queries and elaborate document lists with high precision for queries not considered during the training phase. To update the representations of each partition, our method employs incremental learning strategies. Beginning with an inversion test of the partition lists, we identify queries that contribute with new information and add them to the training phase. The experimental results show that our collection selection method favorably compares with state-of-the-art methods. In addition our method achieves a suitable performance with low parameter sensitivity making it applicable to search engines with hundreds of partitions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Distributed Information Retrieval  
dc.subject
Incremental Learning  
dc.subject
Query Routing  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Reducing hardware hit by queries in web search engines  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-20T13:11:48Z  
dc.journal.volume
52  
dc.journal.number
6  
dc.journal.pagination
1031-1052  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Mendoza, Marcelo. Universidad Técnica Federico Santa María; Chile  
dc.description.fil
Fil: Marin, Mauricio. Universidad de Santiago de Chile; Chile  
dc.description.fil
Fil: Gil Costa, Graciela Verónica. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Ferrarotti, Flavio. Software Competence Center Hagenberg; Austria  
dc.journal.title
Information Processing & Management  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ipm.2016.04.008  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0306457316300899