Mostrar el registro sencillo del ítem
dc.contributor.author
Belardinelli, Rolando Elio
dc.contributor.author
Pereyra, Victor Daniel
dc.date.available
2018-09-20T15:50:53Z
dc.date.issued
2016-05
dc.identifier.citation
Belardinelli, Rolando Elio; Pereyra, Victor Daniel; Nonconvergence of the Wang-Landau algorithms with multiple random walkers; American Physical Society; Physical Review E; 93; 5; 5-2016; 1-9; 053306
dc.identifier.issn
2470-0053
dc.identifier.uri
http://hdl.handle.net/11336/60420
dc.description.abstract
This paper discusses some convergence properties in the entropic sampling Monte Carlo methods with multiple random walkers, particularly in the Wang-Landau (WL) and 1/t algorithms. The classical algorithms are modified by the use of m-independent random walkers in the energy landscape to calculate the density of states (DOS). The Ising model is used to show the convergence properties in the calculation of the DOS, as well as the critical temperature, while the calculation of the number π by multiple dimensional integration is used in the continuum approximation. In each case, the error is obtained separately for each walker at a fixed time, t; then, the average over m walkers is performed. It is observed that the error goes as 1/m. However, if the number of walkers increases above a certain critical value m>mx, the error reaches a constant value (i.e., it saturates). This occurs for both algorithms; however, it is shown that for a given system, the 1/t algorithm is more efficient and accurate than the similar version of the WL algorithm. It follows that it makes no sense to increase the number of walkers above a critical value mx, since it does not reduce the error in the calculation. Therefore, the number of walkers does not guarantee convergence.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Physical Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Monte Carlo
dc.subject
Entropic Sampling
dc.subject
Simulation
dc.subject
Algorithm
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Nonconvergence of the Wang-Landau algorithms with multiple random walkers
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-20T13:10:56Z
dc.journal.volume
93
dc.journal.number
5
dc.journal.pagination
1-9; 053306
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Belardinelli, Rolando Elio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada ; Argentina
dc.description.fil
Fil: Pereyra, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada ; Argentina
dc.journal.title
Physical Review E
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevE.93.053306
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.053306
Archivos asociados