Mostrar el registro sencillo del ítem

dc.contributor.author
Belardinelli, Rolando Elio  
dc.contributor.author
Pereyra, Victor Daniel  
dc.date.available
2018-09-20T15:50:53Z  
dc.date.issued
2016-05  
dc.identifier.citation
Belardinelli, Rolando Elio; Pereyra, Victor Daniel; Nonconvergence of the Wang-Landau algorithms with multiple random walkers; American Physical Society; Physical Review E; 93; 5; 5-2016; 1-9; 053306  
dc.identifier.issn
2470-0053  
dc.identifier.uri
http://hdl.handle.net/11336/60420  
dc.description.abstract
This paper discusses some convergence properties in the entropic sampling Monte Carlo methods with multiple random walkers, particularly in the Wang-Landau (WL) and 1/t algorithms. The classical algorithms are modified by the use of m-independent random walkers in the energy landscape to calculate the density of states (DOS). The Ising model is used to show the convergence properties in the calculation of the DOS, as well as the critical temperature, while the calculation of the number π by multiple dimensional integration is used in the continuum approximation. In each case, the error is obtained separately for each walker at a fixed time, t; then, the average over m walkers is performed. It is observed that the error goes as 1/m. However, if the number of walkers increases above a certain critical value m>mx, the error reaches a constant value (i.e., it saturates). This occurs for both algorithms; however, it is shown that for a given system, the 1/t algorithm is more efficient and accurate than the similar version of the WL algorithm. It follows that it makes no sense to increase the number of walkers above a critical value mx, since it does not reduce the error in the calculation. Therefore, the number of walkers does not guarantee convergence.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Monte Carlo  
dc.subject
Entropic Sampling  
dc.subject
Simulation  
dc.subject
Algorithm  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Nonconvergence of the Wang-Landau algorithms with multiple random walkers  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-20T13:10:56Z  
dc.journal.volume
93  
dc.journal.number
5  
dc.journal.pagination
1-9; 053306  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Belardinelli, Rolando Elio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada ; Argentina  
dc.description.fil
Fil: Pereyra, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada ; Argentina  
dc.journal.title
Physical Review E  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevE.93.053306  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.053306