Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

“Big Data Assimilation” Toward Post-Petascale Severe Weather Prediction: An Overview and Progress

Miyoshi, Takemasa; Lien, Guo-Yuan; Satoh, Shinsuke; Ushio, Tomoo; Bessho, Kotaro; Tomita, Hirofumi; Nishizawa, Seiya; Yoshida, Ryuji; Adachi, Sachiho A.; Liao, Jianwei; Gerofi, Balazs; Ishikawa, Yutaka; Kunii, Masaru; Ruiz, Juan JoseIcon ; Maejima, Yasumitsu; Otsuka, Shigenori; Otsuka, Michiko; Okamoto, Kozo; Seko, Hiromu
Fecha de publicación: 11/2016
Editorial: Institute of Electrical and Electronics Engineers
Revista: Proceedings Of The Ieee
ISSN: 0018-9219
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Meteorología y Ciencias Atmosféricas

Resumen

Following the invention of the telegraph, electronic computer, and remote sensing, “big data” is bringing another revolution to weather prediction. As sensor and computer technologies advance, orders of magnitude bigger data are produced by new sensors and high-precision computer simulation or “big simulation.” Data assimilation (DA) is a key to numerical weather prediction (NWP) by integrating the real-world sensor data into simulation. However, the current DA and NWP systems are not designed to handle the “big data” from next-generation sensors and big simulation. Therefore, we propose “big data assimilation” (BDA) innovation to fully utilize the big data. Since October 2013, the Japan's BDA project has been exploring revolutionary NWP at 100-m mesh refreshed every 30 s, orders of magnitude finer and faster than the current typical NWP systems, by taking advantage of the fortunate combination of next-generation technologies: the 10-petaflops K computer, phased array weather radar, and geostationary satellite Himawari-8. So far, a BDA prototype system was developed and tested with real-world retrospective local rainstorm cases. This paper summarizes the activities and progress of the BDA project, and concludes with perspectives toward the post-petascale supercomputing era.
Palabras clave: Atmospheric Mesaurements , Computer Applications , Kalman Filtering , Optimal Control
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.895Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/60304
DOI: https://dx.doi.org/10.1109/JPROC.2016.2602560
URL: https://ieeexplore.ieee.org/document/7576655/
Colecciones
Articulos(CIMA)
Articulos de CENTRO DE INVESTIGACIONES DEL MAR Y LA ATMOSFERA
Citación
Miyoshi, Takemasa; Lien, Guo-Yuan; Satoh, Shinsuke; Ushio, Tomoo; Bessho, Kotaro; et al.; “Big Data Assimilation” Toward Post-Petascale Severe Weather Prediction: An Overview and Progress; Institute of Electrical and Electronics Engineers; Proceedings Of The Ieee; 104; 11; 11-2016; 2155-2179
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES