Mostrar el registro sencillo del ítem

dc.contributor.author
Ferraro, Diego Omar  
dc.contributor.author
Ghersa, Claudio Marco  
dc.contributor.author
Rivero, Diego Eduardo  
dc.date.available
2018-09-19T19:14:42Z  
dc.date.issued
2012-01  
dc.identifier.citation
Ferraro, Diego Omar; Ghersa, Claudio Marco; Rivero, Diego Eduardo; Weed vegetation of sugarcane cropping systems of northern argentina: Data-mining methods for assessing the environmental and management effects on species composition; Weed Science Society of America; Weed Science; 60; 1; 1-2012; 27-33  
dc.identifier.issn
0043-1745  
dc.identifier.uri
http://hdl.handle.net/11336/60291  
dc.description.abstract
Weed composition may vary because of natural environment, management practices, and their interactions. In this study we presented a systematic approach for analyzing the relative importance of environmental and management factors on weed composition of the most conspicuous species in sugarcane. A data-mining approach represented by k-means cluster and classification and regression trees (CART) were used for analyzing the 11 most frequent weeds recorded in sugarcane cropping systems of northern Argentina. Data of weed abundance and explanatory factors contained records from 1976 sugarcane fields over 2 consecutive years. The k-means method selected five different weed clusters. One cluster contained 44% of the data and exhibited the lowest overall weed abundance. The other four clusters were dominated by three perennial species, bermudagrass, johnsongrass, and purple nutsedge, and the annual itchgrass. The CART model was able to explain 44% of the sugarcane's weed composition variability. Four of the five clusters were represented in the terminal nodes of the final CART model. Sugarcane burning before harvesting was the first factor selected in the CART, and all nodes resulting from this split were characterized by low abundance of weeds. Regarding the predictive power of the variables, rainfall and the genotype identity were the most important predictors. These results have management implications as they indicate that the genotype identity would be a more important factor than crop age when designing sugarcane weed management. Moreover, the abiotic control of cropweed interaction would be more related to rainfall than the environmental heterogeneity related to soil type, for example soil fertility. Although all these exploratory patterns resulting from the CART data-mining procedure should be refined, it became clear that this information may be used to develop an experimental framework to study the factors driving weed assembly. Nomenclature: Bermudagrass, Cynodon dactylon Pers. (CYNDA); johnsongrass, Sorghum halepense (L.) Pers. (SORHA); purple nutsedge, Cyperus rotundus L. (CYPRO); itchgrass, Rottboellia exaltata (L.) L.f.(ROOEX). © Weed Science Society of America.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Weed Science Society of America  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Classification And Regression Trees  
dc.subject
Statistics  
dc.subject
Sugarcane  
dc.subject
Weed Composition  
dc.subject.classification
Agricultura  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Weed vegetation of sugarcane cropping systems of northern argentina: Data-mining methods for assessing the environmental and management effects on species composition  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-10T16:31:33Z  
dc.journal.volume
60  
dc.journal.number
1  
dc.journal.pagination
27-33  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Laurence  
dc.description.fil
Fil: Ferraro, Diego Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía; Argentina  
dc.description.fil
Fil: Ghersa, Claudio Marco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía; Argentina  
dc.description.fil
Fil: Rivero, Diego Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía; Argentina  
dc.journal.title
Weed Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1614/WS-D-11-00023.1  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/weed-science/article/weed-vegetation-of-sugarcane-cropping-systems-of-northern-argentina-datamining-methods-for-assessing-the-environmental-and-management-effects-on-species-composition/DBEC7F008CDF9048505B3FD78044E8B7