Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Matrix-Valued Gegenbauer-Type polynomials

Koelink, Erik; de los Ríos, Ana M.; Román, Pablo ManuelIcon
Fecha de publicación: 12/2017
Editorial: Springer
Revista: Constructive Approximation
ISSN: 0176-4276
e-ISSN: 1432-0940
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

We introduce matrix-valued weight functions of arbitrary size, which are analogues of the weight function for the Gegenbauer or ultraspherical polynomials for the parameter ν> 0. The LDU-decomposition of the weight is explicitly given in terms of Gegenbauer polynomials. We establish a matrix-valued Pearson equation for these matrix weights leading to explicit shift operators relating the weights for parameters ν and ν+ 1. The matrix coefficients of the Pearson equation are obtained using a special matrix-valued differential operator in a commutative algebra of symmetric differential operators. The corresponding orthogonal polynomials are the matrix-valued Gegenbauer-type polynomials which are eigenfunctions of the symmetric matrix-valued differential operators. Using the shift operators, we find the squared norm, and we establish a simple Rodrigues formula. The three-term recurrence relation is obtained explicitly using the shift operators as well. We give an explicit nontrivial expression for the matrix entries of the matrix-valued Gegenbauer-type polynomials in terms of scalar-valued Gegenbauer and Racah polynomials using the LDU-decomposition and differential operators. The case ν= 1 reduces to the case of matrix-valued Chebyshev polynomials previously obtained using group theoretic considerations.
Palabras clave: Darboux Factorization , Gegenbauer Polynomials , Matrix-Valued Differential Operators , Matrix-Valued Orthogonal Polynomials , Shift Operator
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 847.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/60249
DOI: http://dx.doi.org/10.1007/s00365-017-9384-4
URL: https://link.springer.com/article/10.1007%2Fs00365-017-9384-4
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Koelink, Erik; de los Ríos, Ana M.; Román, Pablo Manuel; Matrix-Valued Gegenbauer-Type polynomials; Springer; Constructive Approximation; 46; 3; 12-2017; 459-487
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES