Artículo
The lattice of congruences of a finite line frame
Areces, Carlos Eduardo
; Campercholi, Miguel Alejandro Carlos
; Penazzi, Daniel Eduardo; Sanchez Terraf, Pedro Octavio
Fecha de publicación:
08/2017
Editorial:
Oxford University Press
Revista:
Journal of Logic and Computation
ISSN:
0955-792X
e-ISSN:
1465-363X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let F=F,R be a finite Kripke frame. A congruence of F is a bisimulation of F that is also an equivalence relation on F. The set of all congruences of F is a lattice under the inclusion ordering. In this article, we investigate this lattice in the case that F is a finite line frame. We give concrete descriptions of the join and meet of two congruences with a non-trivial upper bound. Through these descriptions we show that for every non-trivial congruence ρ, the interval [IdF,ρ] embeds into the lattice of divisors of a suitable positive integer. We also prove that any two congruences with a non-trivial upper bound permute.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Areces, Carlos Eduardo; Campercholi, Miguel Alejandro Carlos; Penazzi, Daniel Eduardo; Sanchez Terraf, Pedro Octavio; The lattice of congruences of a finite line frame; Oxford University Press; Journal of Logic and Computation; 27; 8; 8-2017; 2653-2688
Compartir
Altmétricas