Artículo
Spectra of lens spaces from 1-norm spectra of congruence lattices
Fecha de publicación:
01/01/2016
Editorial:
Oxford University Press
Revista:
International Mathematics Research Notices
ISSN:
1073-7928
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
To every n-dimensional lens space L, we associate a congruence lattice L in ℤm, with n=2m - 1 and we prove a formula relating the multiplicities of Hodge-Laplace eigenvalues on L with the number of lattice elements of a given ||·||1-length in l. As a consequence, we show that two lens spaces are isospectral on functions (respectively, isospectral on p-forms for every p) if and only if the associated congruence lattices are ||·||1-isospectral (respectively, ||·||1-isospectral plus a geometric condition). Using this fact, we give, for every dimension n≥ 5, infinitely many examples of Riemannian manifolds that are isospectral on every level p and are not strongly isospectral.
Palabras clave:
Spectrum
,
Lattice
,
Lens Space
,
Norm One
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Lauret, Emilio Agustin; Miatello, Roberto Jorge; Rossetti, Juan Pablo; Spectra of lens spaces from 1-norm spectra of congruence lattices; Oxford University Press; International Mathematics Research Notices; 2016; 4; 1-1-2016; 1054-1089
Compartir
Altmétricas