Artículo
Perfect edge domination: hard and solvable cases
Fecha de publicación:
05/2018
Editorial:
Springer
Revista:
Annals Of Operations Research
ISSN:
0254-5330
e-ISSN:
1572-9338
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let G be an undirected graph. An edge of Gdominates itself and all edges adjacent to it. A subset E′ of edges of G is an edge dominating set of G, if every edge of the graph is dominated by some edge of E′. We say that E′ is a perfect edge dominating set of G, if every edge not in E′ is dominated by exactly one edge of E′. The perfect edge dominating problem is to determine a least cardinality perfect edge dominating set of G. For this problem, we describe two NP-completeness proofs, for the classes of claw-free graphs of degree at most 3, and for bounded degree graphs, of maximum degree at most d≥ 3 and large girth. In contrast, we prove that the problem admits an O(n) time solution, for cubic claw-free graphs. In addition, we prove a complexity dichotomy theorem for the perfect edge domination problem, based on the results described in the paper. Finally, we describe a linear time algorithm for finding a minimum weight perfect edge dominating set of a P5-free graph. The algorithm is robust, in the sense that, given an arbitrary graph G, either it computes a minimum weight perfect edge dominating set of G, or it exhibits an induced subgraph of G, isomorphic to a P5.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Lin, Min Chih; Lozin, Vadim; Moyano, Verónica Andrea; Szwarcfiter, Jayme L.; Perfect edge domination: hard and solvable cases; Springer; Annals Of Operations Research; 264; 1-2; 5-2018; 287-305
Compartir
Altmétricas