Artículo
Local existence conditions for an equations involving the p(x) -Laplacian with critical exponent in RN
Fecha de publicación:
04/2017
Editorial:
Springer
Revista:
Nonlinear Differential Equations And Applications
ISSN:
1021-9722
e-ISSN:
1420-9004
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The purpose of this paper is to formulate sufficient existence conditions for a critical equation involving the p(x)-Laplacian of the form (0.1) below posed in RN. This equation is critical in the sense that the source term has the form K(x) | u| q ( x ) - 2u with an exponent q that can be equal to the critical exponent p∗ at some points of RN including at infinity. The sufficient existence condition we find are local in the sense that they depend only on the behaviour of the exponents p and q near these points. We stress that we do not assume any symmetry or periodicity of the coefficients of the equation and that K is not required to vanish in some sense at infinity like in most existing results. The proof of these local existence conditions is based on a notion of localized best Sobolev constant at infinity and a refined concentration-compactness at infinity.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Saintier, Nicolas Bernard Claude; Silva, Analia; Local existence conditions for an equations involving the p(x) -Laplacian with critical exponent in RN; Springer; Nonlinear Differential Equations And Applications; 24; 2; 4-2017; 1-30
Compartir
Altmétricas