Artículo
Spin-dependent transport through a chiral molecule in the presence of spin-orbit interaction and nonunitary effects
Fecha de publicación:
02/2016
Editorial:
American Physical Society
Revista:
Physical Review B
ISSN:
2469-9969
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Recent experiments have demonstrated the efficacy of chiral helically shaped molecules in polarizing the scattered electron spin, an effect termed chiral-induced spin selectivity. Here we solve a simple tight-binding model for electron transport through a single helical molecule, with spin-orbit interactions on the bonds along the helix. Quantum interference is introduced via additional electron hopping between neighboring sites in the direction of the helix axis. When the helix is connected to two one-dimensional single-mode leads, time-reversal symmetry prevents spin polarization of the outgoing electrons. One possible way to retrieve such a polarization is to allow leakage of electrons from the helix to the environment, via additional outgoing leads. Technically, the leakage generates complex site self-energies, which break unitarity. As a result, the electron waves in the helix become evanescent, with different decay lengths for different spin polarizations, yielding a net spin polarization of the outgoing electrons, which increases with the length of the helix (as observed experimentally). A maximal polarization can be measured at a finite angle away from the helix axis.
Palabras clave:
Transporte Mesoscópicos
,
Magnetismo
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Matityahu, Shlomi; Utsumi, Yasuhiro; Aharony, Amnon; Entin-Wohlman, Ora; Balseiro, Carlos Antonio; Spin-dependent transport through a chiral molecule in the presence of spin-orbit interaction and nonunitary effects; American Physical Society; Physical Review B; 93; 7; 2-2016; 1-10
Compartir
Altmétricas