Artículo
Exact Algorithms for Minimum Weighted Dominating Induced Matching
Fecha de publicación:
03/2017
Editorial:
Springer
Revista:
Algorithmica
ISSN:
0178-4617
e-ISSN:
1432-0541
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Say that an edge of a graph G dominates itself and every other edge sharing a vertex of it. An edge dominating set of a graph G= (V, E) is a subset of edges E′⊆ E which dominates all edges of G. In particular, if every edge of G is dominated by exactly one edge of E′ then E′ is a dominating induced matching. It is known that not every graph admits a dominating induced matching, while the problem to decide if it does admit it is NP-complete. In this paper we consider the problems of counting the number of dominating induced matchings and finding a minimum weighted dominating induced matching, if any, of a graph with weighted edges. We describe three exact algorithms for general graphs. The first runs in linear time for a given vertex dominating set of fixed size of the graph. The second runs in polynomial time if the graph admits a polynomial number of maximal independent sets. The third one is an O∗(1. 1939 n) time and polynomial (linear) space, which improves over the existing algorithms for exactly solving this problem in general graphs.
Palabras clave:
Dominating Induced Matchings
,
Exact Algorithms
,
Graph Theory
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Lin, Min Chih; Mizrahi, Michel Jonathan; Szwarcfiter, Jayme L.; Exact Algorithms for Minimum Weighted Dominating Induced Matching; Springer; Algorithmica; 77; 3; 3-2017; 642-660
Compartir
Altmétricas