Artículo
Lower bounds for the area of black holes in terms of mass, charge, and angular momentum
Fecha de publicación:
06/2013
Editorial:
Amer Physical Soc
Revista:
Physical Review D
ISSN:
1550-7998
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The most general formulation of Penrose’s inequality yields a lower bound for Arnowitt-Deser-Misner mass in terms of the area, charge, and angular momentum of black holes. This inequality is in turn equivalent to an upper and lower bound for the area in terms of the remaining quantities. In this paper, we establish the lower bound for a single black hole in the setting of axisymmetric maximal initial data sets for the Einstein-Maxwell equations, when the non-electromagnetic matter fields are not charged and satisfy the dominant energy condition. It is shown that the inequality is saturated if and only if the initial data arise from the extreme Kerr-Newman spacetime. Further refinements are given when either charge or angular momentum vanish. Last, we discuss the validity of the lower bound in the presence of multiple black holes.
Palabras clave:
Lower Bounds
,
Area
,
Angular Momentum
,
Black Holes
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFEG)
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Citación
Dain, Sergio Alejandro; Khuri, Marcus; Weinstein, Gilbert; Yamada, Sumio; Lower bounds for the area of black holes in terms of mass, charge, and angular momentum; Amer Physical Soc; Physical Review D; 88; 6-2013; 24048-1-24048-7;
Compartir
Altmétricas