Artículo
Nonlocal heat equations in the Heisenberg group
Fecha de publicación:
10/2017
Editorial:
Springer
Revista:
Nonlinear Differential Equations And Applications
ISSN:
1021-9722
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the following nonlocal diffusion equation in the Heisenberg group Hn,ut(z,s,t)=J∗u(z,s,t)-u(z,s,t),where ∗ denote convolution product and J satisfies appropriated hypothesis. For the Cauchy problem we obtain that the asymptotic behavior of the solutions is the same form that the one for the parabolic equation for the fractional laplace operator. To obtain this result we use the spherical transform related to the pair (U(n) , Hn). Finally we prove that solutions of properly rescaled nonlocal Dirichlet problem converge uniformly to the solution of the corresponding Dirichlet problem for the classical heat equation in the Heisenberg group.
Palabras clave:
Heisenberg Group
,
Nonlocal Diffusion
,
Spherical Transform
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Vidal, Raúl Emilio; Nonlocal heat equations in the Heisenberg group; Springer; Nonlinear Differential Equations And Applications; 24; 5; 10-2017; 1-21
Compartir
Altmétricas