Artículo
Eigenvalues for a nonlocal pseudo p-Laplacian
Fecha de publicación:
12/2016
Editorial:
American Institute of Mathematical Sciences
Revista:
Discrete And Continuous Dynamical Systems
ISSN:
1078-0947
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we study the eigenvalue problems for a nonlocal operator of order s that is analogous to the local pseudo p-Laplacian. We show that there is a sequence of eigenvalues λn→ ∞and that the first one is positive, simple, isolated and has a positive and bounded associated eigenfunction. For the first eigenvalue we also analyze the limits as p → ∞ (obtaining a limit nonlocal eigenvalue problem analogous to the pseudo infinity Laplacian) and as s → 1- (obtaining the first eigenvalue for a local operator of p-Laplacian type). To perform this study we have to introduce anisotropic fractional Sobolev spaces and prove some of their properties.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
del Pezzo, Leandro Martin; Rossi, Julio Daniel; Eigenvalues for a nonlocal pseudo p-Laplacian; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 36; 12; 12-2016; 6737-6765
Compartir
Altmétricas