Mostrar el registro sencillo del ítem

dc.contributor.author
Groshaus, Marina Esther  
dc.contributor.author
Lin, Min Chih  
dc.contributor.author
Szwarcfiter, Jayme L.  
dc.date.available
2018-09-17T16:53:22Z  
dc.date.issued
2017-01  
dc.identifier.citation
Groshaus, Marina Esther; Lin, Min Chih; Szwarcfiter, Jayme L.; On neighborhood-Helly graphs; Elsevier Science; Discrete Applied Mathematics; 216; 1-2017; 191-202  
dc.identifier.issn
0166-218X  
dc.identifier.uri
http://hdl.handle.net/11336/59879  
dc.description.abstract
A family F of subsets of some set is intersecting when sets of F pairwise intersect. The family F is Helly when every intersecting subfamily of it contains a common element. In this paper we examine the families of vertex neighborhoods of a graph, with the aim of determining whether or not they are Helly, and also whether or nor they are hereditary Helly, that is, each of the induced subgraphs of the graph is Helly. We examine the cases where the neighborhoods are all open, or all closed, or mixed, that is, some open and some closed. For mixed neighborhoods there are two different kinds of choice of the neighborhood of each vertex to be considered: fixed or arbitrary choice. By fixed mixed neighborhood, we mean that the choice, open or closed, for the neighborhood of a vertex is known in advance, that is part of the input. On the other hand, an arbitrary choice implies that the choice can be made along the process. For the cases of open, closed and fixed mixed neighborhoods, we describe characterizations, both for the neighborhoods to be Helly and hereditary Helly. The characterizations are of two types: based on the concept of extensions, or, for the hereditary cases, by forbidden induced subgraphs. Polynomial time recognition algorithms follow directly from the characterizations. In contrast, for arbitrary mixed neighborhoods, we prove that it is NP-complete to decide whether the family of neighborhoods is Helly or hereditary Helly.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Complexity  
dc.subject
Extensions  
dc.subject
Helly Property  
dc.subject
Np-Hardness  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On neighborhood-Helly graphs  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-14T14:26:56Z  
dc.journal.volume
216  
dc.journal.pagination
191-202  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Lin, Min Chih. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; Brasil. Instituto Nacional de Metrologia, Qualidade e Tecnologia; Brasil  
dc.journal.title
Discrete Applied Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.dam.2016.04.029  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X16302013