Mostrar el registro sencillo del ítem

dc.contributor.author
Heckenberger, I.  
dc.contributor.author
Vendramin, Claudio Leandro  
dc.date.available
2018-09-17T16:52:31Z  
dc.date.issued
2015-01  
dc.identifier.citation
Heckenberger, I.; Vendramin, Claudio Leandro; Nichols algebras over groups with finite root system of rank two III; Academic Press Inc Elsevier Science; Journal of Algebra; 422; 1-2015; 223-256  
dc.identifier.issn
0021-8693  
dc.identifier.uri
http://hdl.handle.net/11336/59874  
dc.description.abstract
We compute the finite-dimensional Nichols algebras over the sum of two simple Yetter-Drinfeld modules V and W over non-abelian epimorphic images of a certain central extension of the dihedral group of eight elements or SL(2, 3), and such that the Weyl groupoid of the pair (V, W) is finite. These central extensions appear in the classification of non-elementary finite-dimensional Nichols algebras with finite Weyl groupoid of rank two. We deduce new information on the structure of primitive elements of finite-dimensional Nichols algebras over groups.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Hopf Algebras  
dc.subject
Nichols Algebras  
dc.subject
Weyl Groupoids  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Nichols algebras over groups with finite root system of rank two III  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-13T13:12:40Z  
dc.journal.volume
422  
dc.journal.pagination
223-256  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Heckenberger, I.. Philipps-Universität Marburg; Alemania  
dc.description.fil
Fil: Vendramin, Claudio Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Journal of Algebra  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jalgebra.2014.09.013  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869314005201