Mostrar el registro sencillo del ítem
dc.contributor.author
Bonheure, Denis
dc.contributor.author
Rossi, Julio Daniel

dc.contributor.author
Saintier, Nicolas Bernard Claude

dc.date.available
2018-09-17T16:51:38Z
dc.date.issued
2016-10
dc.identifier.citation
Bonheure, Denis; Rossi, Julio Daniel; Saintier, Nicolas Bernard Claude; The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 195; 5; 10-2016; 1771-1785
dc.identifier.issn
0373-3114
dc.identifier.uri
http://hdl.handle.net/11336/59873
dc.description.abstract
In this paper, we study the behavior as p→ ∞ of eigenvalues and eigenfunctions of a system of p-Laplacians, that is (Formula presented.) in a bounded smooth domain Ω. Here α+ β= p. We assume that α/p→Γ and β/p→1-Γ as p→ ∞ and we prove that for the first eigenvalue λ1,p we have (λ1,p)1/p→λ∞=1/maxx∈Ωdist(x,∂Ω).Concerning the eigenfunctions (up, vp) associated with λ1,p normalized by ∫Ω|up|α|vp|β=1, there is a uniform limit (u∞, v∞) that is a solution to a limit minimization problem as well as a viscosity solution to (Formula presented.) In addition, we also analyze the limit PDE when we consider higher eigenvalues.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Heidelberg

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Infinity Laplacian
dc.subject
Nonlinear Eigenvalue Problem
dc.subject
P-Laplacian
dc.subject
Viscosity Solutions
dc.subject.classification
Matemática Pura

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-14T13:17:11Z
dc.identifier.eissn
1618-1891
dc.journal.volume
195
dc.journal.number
5
dc.journal.pagination
1771-1785
dc.journal.pais
Alemania

dc.journal.ciudad
Heidelberg
dc.description.fil
Fil: Bonheure, Denis. Université Libre de Bruxelles; Bélgica
dc.description.fil
Fil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Saintier, Nicolas Bernard Claude. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Annali Di Matematica Pura Ed Applicata

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10231-015-0547-2
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10231-015-0547-2
Archivos asociados