Mostrar el registro sencillo del ítem

dc.contributor.author
Nosir, M. A.  
dc.contributor.author
Martin Gondre, L.  
dc.contributor.author
Bocan, Gisela Anahí  
dc.contributor.author
Díez Muiño, R.  
dc.date.available
2018-09-17T13:51:23Z  
dc.date.issued
2016-09  
dc.identifier.citation
Nosir, M. A.; Martin Gondre, L.; Bocan, Gisela Anahí; Díez Muiño, R.; Density functional theory study of nitrogen atoms and molecules interacting with Fe(1 1 1) surfaces; Elsevier Science; Beam Interactions with Materials and Atoms; 382; 9-2016; 105-109  
dc.identifier.issn
0168-583X  
dc.identifier.uri
http://hdl.handle.net/11336/59839  
dc.description.abstract
We present Density functional theory (DFT) calculations for the investigation of the structural relaxation of Fe(1 1 1), as well as for the study of the interaction of nitrogen atoms and molecules with this surface. We perform spin polarized DFT calculations using VASP (Vienna Ab-initio Simulation Package) code. We use the supercell approach and up to 19 slab layers for the relaxation of the Fe(1 1 1) surface. We find a contraction of the first two interlayer distances with a relative value of Δ12=-7.8% and Δ23=-21.7% with respect to the bulk reference. The third interlayer distance is however expanded with a relative change of Δ34=9.7%. Early experimental studies of the surface relaxation using Low Energy Electron Diffraction (LEED) and Medium Energy Ion Scattering (MEIS) showed contradictory results, even on the relaxation general trend. Our current theoretical results support the LEED conclusions and are consistent qualitatively with other recent theoretical calculations. In addition, we study the interaction energy of nitrogen atoms and molecules on the Fe(1 1 1) surface. The nitrogen atoms are adsorbed in the hollow site of the unit cell, with an adsorption energy consistent with the one found in previous studies. In addition, we find the three molecularly adsorbed states that are observed experimentally. Two of them correspond to the adsorbed molecule oriented normal to the surface and a third one corresponds to the molecule adsorbed parallel to the surface. We conclude that our results are accurate enough to be used to build a full six-dimensional potential energy surface for the N2 system.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Adsorption Energy  
dc.subject
Density Functional Theory  
dc.subject
Diffusion  
dc.subject
Heterogeneous Catalysis  
dc.subject
Iron Surface  
dc.subject
Nitrogen  
dc.subject
Surface Relaxation  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Density functional theory study of nitrogen atoms and molecules interacting with Fe(1 1 1) surfaces  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-14T14:01:35Z  
dc.journal.volume
382  
dc.journal.pagination
105-109  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Nosir, M. A.. Consejo Superior de Investigaciones Científicas; España. Donostia International Physics Center; España  
dc.description.fil
Fil: Martin Gondre, L.. Universite de Franche-Comte; Francia  
dc.description.fil
Fil: Bocan, Gisela Anahí. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina  
dc.description.fil
Fil: Díez Muiño, R.. Consejo Superior de Investigaciones Científicas; España. Donostia International Physics Center; España  
dc.journal.title
Beam Interactions with Materials and Atoms  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.nimb.2016.03.002  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0168583X1600207X