Mostrar el registro sencillo del ítem

dc.contributor.author
Sanchez, Jorge Adrian  
dc.contributor.author
Redolfi, Javier Andrés  
dc.date.available
2018-09-17T13:40:46Z  
dc.date.issued
2015-07  
dc.identifier.citation
Sanchez, Jorge Adrian; Redolfi, Javier Andrés; Exponential family Fisher vector for image classification; Elsevier Science; Pattern Recognition Letters; 59; 7-2015; 26-32  
dc.identifier.issn
0167-8655  
dc.identifier.uri
http://hdl.handle.net/11336/59825  
dc.description.abstract
One of the fundamental problems in image classification is to devise models that allow us to relate the images to higher-level semantic concepts in an efficient and reliable way. A widely used approach consists on extracting local descriptors from the images and to summarize them into an image-level representation. Within this framework, the Fisher vector (FV) is one of the most robust signatures to date. In the FV, local descriptors are modeled as samples drawn from a mixture of Gaussian pdfs. An image is represented by a gradient vector characterizing the distributions of samples w.r.t. the model. Equipped with robust features like SIFT, the FV has shown state-of-the-art performance on different recognition problems. However, it is not clear how it should be applied when the feature space is clearly non-Euclidean, leading to heuristics that ignore the underlying structure of the space. In this paper we generalize the Gaussian FV to a broader family of distributions known as the exponential family. The model, termed exponential family Fisher vectors (eFV), provides a unified framework from which rich and powerful representations can be derived. Experimental results show the generality and flexibility of our approach.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Exponential Family  
dc.subject
Fisher Kernel  
dc.subject
Fisher Vectors  
dc.subject
Image Classification  
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Exponential family Fisher vector for image classification  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-04T16:26:25Z  
dc.identifier.eissn
1872-7344  
dc.journal.volume
59  
dc.journal.pagination
26-32  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Sanchez, Jorge Adrian. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina  
dc.description.fil
Fil: Redolfi, Javier Andrés. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina  
dc.journal.title
Pattern Recognition Letters  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167865515000811  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.patrec.2015.03.010