Mostrar el registro sencillo del ítem

dc.contributor.author
Lauret, Jorge Ruben  
dc.contributor.author
Will, Cynthia Eugenia  
dc.date.available
2018-09-14T20:06:17Z  
dc.date.issued
2017-02  
dc.identifier.citation
Lauret, Jorge Ruben; Will, Cynthia Eugenia; On the symplectic curvature flow for locally homogeneous manifolds; International Press Boston; Journal Of Symplectic Geometry; 15; 1; 2-2017; 1-49  
dc.identifier.issn
1527-5256  
dc.identifier.uri
http://hdl.handle.net/11336/59793  
dc.description.abstract
Recently, J. Streets and G. Tian introduced a natural way to evolve an almost-Kähler manifold called the symplectic curvature flow, in which the metric, the symplectic structure and the almost-complex structure are all evolving. We study in this paper different aspects of the flow on locally homogeneous manifolds, including long-time existence, solitons, regularity and convergence. We develop in detail two large classes of Lie groups, which are relatively simple from a structural point of view but yet geometrically rich and exotic: solvable Lie groups with a codimension one abelian normal subgroup and a construction attached to each left symmetric algebra. As an application, we exhibit a soliton structure on most of symplectic surfaces which are Lie groups. A family of ancient solutions which develop a finite time singularity was found; neither their Chern scalar nor their scalar curvature are monotone along the flow and they converge in the pointed sense to a (non-Kähler) shrinking soliton solution on the same Lie group.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
International Press Boston  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Symplectic Geometry  
dc.subject
Curvature Flow  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On the symplectic curvature flow for locally homogeneous manifolds  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-14T19:01:22Z  
dc.journal.volume
15  
dc.journal.number
1  
dc.journal.pagination
1-49  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.description.fil
Fil: Will, Cynthia Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.journal.title
Journal Of Symplectic Geometry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.intlpress.com/site/pub/pages/journals/items/jsg/content/vols/0015/0001/a001/index.html  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1405.6065  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4310/JSG.2017.v15.n1.a1