Mostrar el registro sencillo del ítem

dc.contributor.author
Pham, Jonathan T.  
dc.contributor.author
Xue, Longjian  
dc.contributor.author
del Campo, Aránzazu  
dc.contributor.author
Salierno, Marcelo Javier  
dc.date.available
2018-09-14T19:39:46Z  
dc.date.issued
2016-07  
dc.identifier.citation
Pham, Jonathan T.; Xue, Longjian; del Campo, Aránzazu; Salierno, Marcelo Javier; Guiding cell migration with microscale stiffness patterns and undulated surfaces; Elsevier; Acta Biomaterialia; 38; 7-2016; 106-115  
dc.identifier.issn
1742-7061  
dc.identifier.uri
http://hdl.handle.net/11336/59782  
dc.description.abstract
By placing stiff structures under soft materials, prior studies have demonstrated that cells sense and prefer to position themselves over the stiff structures. However, an understanding of how cells migrate on such surfaces has not been established. Many studies have also shown that cells readily align to surface topography. Here we investigate the influence of these two aspects in directing cell migration on surfaces with 5 and 10 μm line stiffness patterns (a cellular to subcellular length scale). A simple approach to create flat, stiffness-patterned surfaces by suspending a thin, low modulus polydimethylsiloxane (PDMS) film over a high modulus PDMS structure is presented, as well as a route to add undulations. We confirm that cells are able to sense through the thin film by observation of focal adhesions being positioned on stiff regions. We examine migration by introducing migration efficiency, a quantitative parameter to determine how strongly cells migrate in a certain direction. We found that cells have a preference to align and migrate along stiffness patterns while the addition of undulations boosts this effect, significantly increasing migration efficiency in either case. Interestingly, we found speed to play little role in the migration efficiency and to be mainly influenced by the top layer modulus. Our results demonstrate that both stiffness patterns and surface undulations are important considerations when investigating the interactions of cells with biomaterial surfaces. Statement of Significance Two common physical considerations for cell-surface interactions include patterned stiffness and patterned topography. However, their relative influences on cell migration behavior have not been established, particularly on cellular to subcellular scale patterns. For stiffness patterning, it has been recently shown that cells tend to position themselves over a stiff structure that is placed under a thin soft layer. By quantifying the directional migration efficiency on such surfaces with and without undulations, we show that migration can be manipulated by flat stiffness patterns, although surface undulations also play a strong role. Our results offer insight on the effect of cellular scale stiffness and topographical patterns on cell migration, which is critical for the development of fundamental cell studies and engineered implants.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Cell Migration  
dc.subject
Focal Adhesions  
dc.subject
Migration Efficiency  
dc.subject
Stiffness Patterns  
dc.subject
Surface Topography  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Guiding cell migration with microscale stiffness patterns and undulated surfaces  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-14T13:16:15Z  
dc.journal.volume
38  
dc.journal.pagination
106-115  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Pham, Jonathan T.. Max Planck Institute for Polymer Research; Alemania  
dc.description.fil
Fil: Xue, Longjian. Max Planck Institute for Polymer Research; Alemania  
dc.description.fil
Fil: del Campo, Aránzazu. Leibniz Institute for New Materials; Alemania. Universitat Saarland; Alemania  
dc.description.fil
Fil: Salierno, Marcelo Javier. Max Planck Institute for Polymer Research; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina  
dc.journal.title
Acta Biomaterialia  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.actbio.2016.04.031  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1742706116301933