Mostrar el registro sencillo del ítem

dc.contributor.author
Ruestes, Carlos Javier  
dc.contributor.author
Bringa, Eduardo Marcial  
dc.contributor.author
Rudd, R. E.  
dc.contributor.author
Remington, Bruce A.  
dc.contributor.author
Remington, T.P.  
dc.contributor.author
Meyers, Marc A.  
dc.date.available
2018-09-14T18:45:02Z  
dc.date.issued
2015-11  
dc.identifier.citation
Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Rudd, R. E.; Remington, Bruce A.; Remington, T.P.; et al.; Probing the character of ultra-fast dislocations; Nature Publishing Group; Scientific Reports; 5; 6892; 11-2015; 1-9  
dc.identifier.issn
2045-2322  
dc.identifier.uri
http://hdl.handle.net/11336/59756  
dc.description.abstract
Plasticity is often controlled by dislocation motion, which was first measured for low pressure, low strain rate conditions decades ago. However, many applications require knowledge of dislocation motion at high stress conditions where the data are sparse, and come from indirect measurements dominated by the effect of dislocation density rather than velocity. Here we make predictions based on atomistic simulations that form the basis for a new approach to measure dislocation velocities directly at extreme conditions using three steps: create prismatic dislocation loops in a near-surface region using nanoindentation, drive the dislocations with a shockwave, and use electron microscopy to determine how far the dislocations moved and thus their velocity at extreme stress and strain rate conditions. We report on atomistic simulations of tantalum that make detailed predictions of dislocation flow, and find that the approach is feasible and can uncover an exciting range of phenomena, such as transonic dislocations and a novel form of loop stretching. The simulated configuration enables a new class of experiments to probe average dislocation velocity at very high applied shear stress.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Nature Publishing Group  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Dislocations  
dc.subject
Supersonic  
dc.subject
Molecular Dynamicsn  
dc.subject
Nanoindentation  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Probing the character of ultra-fast dislocations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-14T14:14:46Z  
dc.journal.volume
5  
dc.journal.number
6892  
dc.journal.pagination
1-9  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Rudd, R. E.. Lawrence Livermore National Laboratory; Estados Unidos  
dc.description.fil
Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados Unidos  
dc.description.fil
Fil: Remington, T.P.. University of California at San Diego; Estados Unidos  
dc.description.fil
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos  
dc.journal.title
Scientific Reports  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1038/srep16892  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/srep16892