Mostrar el registro sencillo del ítem
dc.contributor.author
Moyano, Luis Gregorio
dc.date.available
2018-09-14T18:00:13Z
dc.date.issued
2017-02
dc.identifier.citation
Moyano, Luis Gregorio; Learning network representations; EDP Sciences; European Physical Journal: Special Topics; 226; 3; 2-2017; 499-518
dc.identifier.issn
1951-6355
dc.identifier.uri
http://hdl.handle.net/11336/59716
dc.description.abstract
In this review I present several representation learning methods, and discuss the latest advancements with emphasis in applications to network science. Representation learning is a set of techniques that has the goal of efficiently mapping data structures into convenient latent spaces. Either for dimensionality reduction or for gaining semantic content, this type of feature embeddings has demonstrated to be useful, for example, for node classification or link prediction tasks, among many other relevant applications to networks. I provide a description of the state-of-the-art of network representation learning as well as a detailed account of the connections with other fields of study such as continuous word embeddings and deep learning architectures. Finally, I provide a broad view of several applications of these techniques to networks in various domains.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
EDP Sciences
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Embeedings
dc.subject
Redes Complejas
dc.subject
Representaciones
dc.subject
Aprendizaje de Representaciones
dc.subject.classification
Astronomía
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Learning network representations
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-12T17:31:24Z
dc.journal.volume
226
dc.journal.number
3
dc.journal.pagination
499-518
dc.journal.pais
Francia
dc.journal.ciudad
Les Ulis
dc.description.fil
Fil: Moyano, Luis Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
dc.journal.title
European Physical Journal: Special Topics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1140/epjst/e2016-60266-2
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140%2Fepjst%2Fe2016-60266-2
Archivos asociados