Mostrar el registro sencillo del ítem

dc.contributor.author
Moyano, Luis Gregorio  
dc.date.available
2018-09-14T18:00:13Z  
dc.date.issued
2017-02  
dc.identifier.citation
Moyano, Luis Gregorio; Learning network representations; EDP Sciences; European Physical Journal: Special Topics; 226; 3; 2-2017; 499-518  
dc.identifier.issn
1951-6355  
dc.identifier.uri
http://hdl.handle.net/11336/59716  
dc.description.abstract
In this review I present several representation learning methods, and discuss the latest advancements with emphasis in applications to network science. Representation learning is a set of techniques that has the goal of efficiently mapping data structures into convenient latent spaces. Either for dimensionality reduction or for gaining semantic content, this type of feature embeddings has demonstrated to be useful, for example, for node classification or link prediction tasks, among many other relevant applications to networks. I provide a description of the state-of-the-art of network representation learning as well as a detailed account of the connections with other fields of study such as continuous word embeddings and deep learning architectures. Finally, I provide a broad view of several applications of these techniques to networks in various domains.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
EDP Sciences  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Embeedings  
dc.subject
Redes Complejas  
dc.subject
Representaciones  
dc.subject
Aprendizaje de Representaciones  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Learning network representations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-12T17:31:24Z  
dc.journal.volume
226  
dc.journal.number
3  
dc.journal.pagination
499-518  
dc.journal.pais
Francia  
dc.journal.ciudad
Les Ulis  
dc.description.fil
Fil: Moyano, Luis Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.journal.title
European Physical Journal: Special Topics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1140/epjst/e2016-60266-2  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140%2Fepjst%2Fe2016-60266-2