Mostrar el registro sencillo del ítem

dc.contributor.author
Nietiadi, Maureen L.  
dc.contributor.author
Umstätter, Philipp  
dc.contributor.author
Tjong, Tiffany  
dc.contributor.author
Rosandi, Yudi  
dc.contributor.author
Millán, Emmanuel Nicolás  
dc.contributor.author
Bringa, Eduardo Marcial  
dc.contributor.author
Urbassek, Herbert M.  
dc.date.available
2018-09-14T14:33:30Z  
dc.date.issued
2017-05  
dc.identifier.citation
Nietiadi, Maureen L.; Umstätter, Philipp; Tjong, Tiffany; Rosandi, Yudi; Millán, Emmanuel Nicolás; et al.; The bouncing threshold in silica nanograin collisions; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 19; 25; 5-2017; 16555-16562  
dc.identifier.issn
1463-9076  
dc.identifier.uri
http://hdl.handle.net/11336/59672  
dc.description.abstract
Using molecular dynamics simulations, we study collisions between amorphous silica nanoparticles. Our silica model contains uncontaminated surfaces, that is, the effect of surface hydroxylation or of adsorbed water layers is excluded. For central collisions, we characterize the boundary between sticking and bouncing collisions as a function of impact velocity and particle size and quantify the coefficient of restitution. We show that the traditional Johnson-Kendall-Roberts (JKR) model provides a valid description of the ingoing trajectory of two grains up to the moment of maximum compression. The distance of closest approach is slightly underestimated by the JKR model, due to the appearance of plasticity in the grains, which shows up in the form of localized shear transformation zones. The JKR model strongly underestimates the contact radius and the collision duration during the outgoing trajectory, evidencing that the breaking of covalent bonds during grain separation is not well described by this model. The adhesive neck formed between the two grains finally collapses while creating narrow filaments joining the grains, which eventually tear.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Royal Society of Chemistry  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Molecular Dynamics  
dc.subject
Collision  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
The bouncing threshold in silica nanograin collisions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-12T17:31:12Z  
dc.journal.volume
19  
dc.journal.number
25  
dc.journal.pagination
16555-16562  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Cambridge  
dc.description.fil
Fil: Nietiadi, Maureen L.. University of Kaiserslautern; Alemania  
dc.description.fil
Fil: Umstätter, Philipp. University of Kaiserslautern; Alemania  
dc.description.fil
Fil: Tjong, Tiffany. Universitas Padjadjaran; Indonesia  
dc.description.fil
Fil: Rosandi, Yudi. Universitas Padjadjaran; Indonesia  
dc.description.fil
Fil: Millán, Emmanuel Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Urbassek, Herbert M.. University of Kaiserslautern; Alemania  
dc.journal.title
Physical Chemistry Chemical Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1039/C7CP02106B  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2017/CP/C7CP02106B