Mostrar el registro sencillo del ítem

dc.contributor.author
Samarage, Chaminda R.  
dc.contributor.author
White, Melanie D.  
dc.contributor.author
Alvarez, Yanina Daniela  
dc.contributor.author
Fierro González, Juan Carlos  
dc.contributor.author
Henon, Yann  
dc.contributor.author
Jesudason, Edwin C.  
dc.contributor.author
Bissiere, Stephanie  
dc.contributor.author
Fouras, Andreas  
dc.contributor.author
Plachta, Nicolas  
dc.date.available
2018-09-13T19:18:03Z  
dc.date.issued
2015-08  
dc.identifier.citation
Samarage, Chaminda R.; White, Melanie D.; Alvarez, Yanina Daniela; Fierro González, Juan Carlos; Henon, Yann; et al.; Cortical Tension Allocates the First Inner Cells of the Mammalian Embryo; Cell Press; Developmental Cell; 34; 4; 8-2015; 435-447  
dc.identifier.issn
1534-5807  
dc.identifier.uri
http://hdl.handle.net/11336/59606  
dc.description.abstract
Every cell in our body originates from the pluripotent inner mass of the embryo, yet it is unknown how biomechanical forces allocate inner cells in vivo. Here we discover subcellular heterogeneities in tensile forces, generated by actomyosin cortical networks, which drive apical constriction to position the first inner cells of living mouse embryos. Myosin II accumulates specifically around constricting cells, and its disruption dysregulates constriction and cell fate. Laser ablations of actomyosin networks reveal that constricting cells have higher cortical tension, generate tension anisotropies and morphological changes in adjacent regions of neighboring cells, and require their neighbors to coordinate their own changes in shape. Thus, tensile forces determine the first spatial segregation of cells during mammalian development. We propose that, unlike more cohesive tissues, the early embryo dissipates tensile forces required by constricting cells via their neighbors, thereby allowing confined cell repositioning without jeopardizing global architecture.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Cell Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Mouse Embryo Development  
dc.subject
Forces in Development  
dc.subject
Cortical Tension  
dc.subject
Inner Cell Mass Formation  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Cortical Tension Allocates the First Inner Cells of the Mammalian Embryo  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-13T13:14:27Z  
dc.journal.volume
34  
dc.journal.number
4  
dc.journal.pagination
435-447  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Samarage, Chaminda R.. Monash University; Australia  
dc.description.fil
Fil: White, Melanie D.. Monash University; Australia  
dc.description.fil
Fil: Alvarez, Yanina Daniela. Monash University; Australia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Fierro González, Juan Carlos. Monash University; Australia  
dc.description.fil
Fil: Henon, Yann. Monash University; Australia  
dc.description.fil
Fil: Jesudason, Edwin C.. National Health Service Scotland; Reino Unido  
dc.description.fil
Fil: Bissiere, Stephanie. Monash University; Australia. Institute of Molecular and Cell Biology; Singapur  
dc.description.fil
Fil: Fouras, Andreas. Monash University; Australia  
dc.description.fil
Fil: Plachta, Nicolas. Monash University; Australia. Institute of Molecular and Cell Biology; Singapur  
dc.journal.title
Developmental Cell  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.devcel.2015.07.004  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1534580715004554