Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Criticality of mostly informative samples: A Bayesian model selection approach

Haimovici, ArielIcon ; Marsili, Matteo
Fecha de publicación: 10/2015
Editorial: IOP Publishing
Revista: Journal of Statistical Mechanics: Theory and Experiment
ISSN: 1742-5468
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Astronomía

Resumen

We discuss a Bayesian model selection approach to high-dimensional data in the deep under-sampling regime. The data is based on a representation of the possible discrete states s, as defined by the observer, and it consists of M observations of the state. This approach shows that, for a given sample size M, not all states observed in the sample can be distinguished. Rather, only a partition of the sampled states s can be resolved. Such a partition defines an emergent classification qs of the states that becomes finer and finer as the sample size increases, through a process of symmetry breaking between states. This allows us to distinguish between the resolution of a given representation of the observer defined states s, which is given by the entropy of s, and its relevance, which is defined by the entropy of the partition qs. Relevance has a nonmonotonic dependence on resolution, for a given sample size. In addition, we characterise most relevant samples and we show that they exhibit power law frequency distributions, generally taken as signatures of criticality. This suggests that criticality reflects the relevance of a given representation of the states of a complex system, and does not necessarily require a specific mechanism of self-organisation to a critical point.
Palabras clave: Data Mining (Theory) , Statistical Inference
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.727Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/59551
DOI: http://dx.doi.org/10.1088/1742-5468/2015/10/P10013
URL: http://iopscience.iop.org/article/10.1088/1742-5468/2015/10/P10013/meta
URL: https://arxiv.org/abs/1502.00356
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Haimovici, Ariel; Marsili, Matteo; Criticality of mostly informative samples: A Bayesian model selection approach; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2015; 10; 10-2015; 1-26; P10013
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES