Mostrar el registro sencillo del ítem

dc.contributor.author
Botbol, Nicolas Santiago  
dc.contributor.author
Chardin, Marc  
dc.date.available
2018-09-13T17:07:39Z  
dc.date.issued
2017-03  
dc.identifier.citation
Botbol, Nicolas Santiago; Chardin, Marc; Castelnuovo Mumford regularity with respect to multigraded ideals; Academic Press Inc Elsevier Science; Journal of Algebra; 474; 3-2017; 361-392  
dc.identifier.issn
0021-8693  
dc.identifier.uri
http://hdl.handle.net/11336/59527  
dc.description.abstract
In this article we extend a previous definition of Castelnuovo–Mumford regularity for modules over an algebra graded by a finitely generated abelian group. Our notion of regularity is based on Maclagan and Smith's definition, and is extended first by working over any commutative base ring, and second by considering local cohomology with support in an arbitrary finitely generated graded ideal B, obtaining, for each B, a B-regularity region. The first extension provides a natural approach for working with families of sheaves or of graded modules, while the second opens new applications. Even in the more restrictive framework where Castelnuovo–Mumford was defined before us, there were only very partial results on estimates for the shifts in a minimal graded free resolution from the Castelnuovo–Mumford regularity. We prove sharp estimates in our general framework, and this is one of our main advances. We provide tools to deduce information on the graded Betti numbers from the knowledge of regions where the local cohomology with support in a given graded ideal vanishes. Conversely, vanishing of local cohomology with support in any graded ideal is deduced from the shifts in a free resolution and the local cohomology of the polynomial ring. The flexibility of treating local cohomology with respect to any B opens up new possibilities for passing information. We provide new persistence results for the vanishing of local cohomology that extend the fact that weakly regular implies regular in the classical case, and we give sharp estimates for the regularity of a truncation of a module. In the last part, we present a result on Hilbert functions for multigraded polynomial rings, which provides a simple proof of the generalized Grothendieck–Serre formula.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
CASTELNUOVO–MUMFORD REGULARITY  
dc.subject
LOCAL COHOMOLOGY  
dc.subject
SYZYGIES  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Castelnuovo Mumford regularity with respect to multigraded ideals  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-13T13:12:22Z  
dc.journal.volume
474  
dc.journal.pagination
361-392  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Botbol, Nicolas Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Chardin, Marc. Centre National de la Recherche Scientifique; Francia. Institut de Mathématiques de Jussieu; Francia  
dc.journal.title
Journal of Algebra  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869316304422  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jalgebra.2016.11.017  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1107.2494