Mostrar el registro sencillo del ítem
dc.contributor.author
Botbol, Nicolas Santiago
dc.contributor.author
Chardin, Marc
dc.date.available
2018-09-13T17:07:39Z
dc.date.issued
2017-03
dc.identifier.citation
Botbol, Nicolas Santiago; Chardin, Marc; Castelnuovo Mumford regularity with respect to multigraded ideals; Academic Press Inc Elsevier Science; Journal of Algebra; 474; 3-2017; 361-392
dc.identifier.issn
0021-8693
dc.identifier.uri
http://hdl.handle.net/11336/59527
dc.description.abstract
In this article we extend a previous definition of Castelnuovo–Mumford regularity for modules over an algebra graded by a finitely generated abelian group. Our notion of regularity is based on Maclagan and Smith's definition, and is extended first by working over any commutative base ring, and second by considering local cohomology with support in an arbitrary finitely generated graded ideal B, obtaining, for each B, a B-regularity region. The first extension provides a natural approach for working with families of sheaves or of graded modules, while the second opens new applications. Even in the more restrictive framework where Castelnuovo–Mumford was defined before us, there were only very partial results on estimates for the shifts in a minimal graded free resolution from the Castelnuovo–Mumford regularity. We prove sharp estimates in our general framework, and this is one of our main advances. We provide tools to deduce information on the graded Betti numbers from the knowledge of regions where the local cohomology with support in a given graded ideal vanishes. Conversely, vanishing of local cohomology with support in any graded ideal is deduced from the shifts in a free resolution and the local cohomology of the polynomial ring. The flexibility of treating local cohomology with respect to any B opens up new possibilities for passing information. We provide new persistence results for the vanishing of local cohomology that extend the fact that weakly regular implies regular in the classical case, and we give sharp estimates for the regularity of a truncation of a module. In the last part, we present a result on Hilbert functions for multigraded polynomial rings, which provides a simple proof of the generalized Grothendieck–Serre formula.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Academic Press Inc Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
CASTELNUOVO–MUMFORD REGULARITY
dc.subject
LOCAL COHOMOLOGY
dc.subject
SYZYGIES
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Castelnuovo Mumford regularity with respect to multigraded ideals
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-13T13:12:22Z
dc.journal.volume
474
dc.journal.pagination
361-392
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Botbol, Nicolas Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Chardin, Marc. Centre National de la Recherche Scientifique; Francia. Institut de Mathématiques de Jussieu; Francia
dc.journal.title
Journal of Algebra
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869316304422
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jalgebra.2016.11.017
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1107.2494
Archivos asociados