Mostrar el registro sencillo del ítem

dc.contributor.author
Millán, Emmanuel Nicolás  
dc.contributor.author
Wolovick, Nicolás  
dc.contributor.author
Piccoli, María Fabiana  
dc.contributor.author
Garcia Garino, Carlos Gabriel  
dc.contributor.author
Bringa, Eduardo Marcial  
dc.date.available
2018-09-13T15:55:04Z  
dc.date.issued
2017-09  
dc.identifier.citation
Millán, Emmanuel Nicolás; Wolovick, Nicolás; Piccoli, María Fabiana; Garcia Garino, Carlos Gabriel; Bringa, Eduardo Marcial; Performance analysis and comparison of cellular automata GPU implementations; Springer; Cluster Computing-the Journal Of Networks Software Tools And Applications; 20; 3; 9-2017; 2763-2777  
dc.identifier.issn
1386-7857  
dc.identifier.uri
http://hdl.handle.net/11336/59513  
dc.description.abstract
Cellular automata (CA) models are of interest to several scientific areas, and there is a growing interest in exploring large systems which would need high performance computing. In this work a CA implementation is presented which performs well in five different NVIDIA GPU architectures, from Tesla to Maxwell, simulating systems with up to a billion cells. Using the game of life (GoL) and a more complex variation of GoL as examples, a performance of 5.58e6 evaluated cells/s is achieved. The two optimizations most often used in previous studies are the use of shared memory and Multicell algorithms. Here, these optimizations do not improve performance in Fermi or newer architectures. The GoL CA code running in an NVIDIA Titan X obtained a speedup of up to ∼ 85 x and up to ∼ 230 x for a more complex CA, compared to an optimized serial CPU implementation. Finally, the efficiency of each GPU is analyzed in terms of cell performance/transistors and cell performance/bandwidth showing how the architectures improved for this particular problem.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Benchmarks  
dc.subject
Cellular Automata  
dc.subject
Graphics Processing Unit  
dc.subject
Performance Analysis  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Performance analysis and comparison of cellular automata GPU implementations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-12T14:02:31Z  
dc.journal.volume
20  
dc.journal.number
3  
dc.journal.pagination
2763-2777  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Millán, Emmanuel Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Wolovick, Nicolás. Universidad Nacional de Córdoba; Argentina  
dc.description.fil
Fil: Piccoli, María Fabiana. Universidad Nacional de San Luis; Argentina  
dc.description.fil
Fil: Garcia Garino, Carlos Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo; Argentina  
dc.description.fil
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.journal.title
Cluster Computing-the Journal Of Networks Software Tools And Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1007/s10586-017-0850-3  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10586-017-0850-3