Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Inferring propagation paths for sparsely observed perturbations on complex networks

Massucci, Francesco Alessandro; Wheeler, JonathanIcon ; Beltrán Debón, Raúl; Joven, Jorge; Sales Pardo, Marta; Guimerà, Roger
Fecha de publicación: 10/2016
Editorial: American Association for the Advancement of Science
Revista: Science Advances
ISSN: 2375-2548
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Astronomía

Resumen

In a complex system, perturbations propagate by following paths on the network of interactions among the system's units. In contrast to what happens with the spreading of epidemics, observations of general perturbations are often very sparse in time (there is a single observation of the perturbed system) and in "space" (only a few perturbed and unperturbed units are observed). A major challenge in many areas, from biology to the social sciences, is to infer the propagation paths from observations of the effects of perturbation under these sparsity conditions. We address this problem and show that it is possible to go beyond the usual approach of using the shortest paths connecting the known perturbed nodes. Specifically, we show that a simple and general probabilistic model, which we solved using belief propagation, provides fast and accurate estimates of the probabilities of nodes being perturbed.
Palabras clave: Complex Networks , Inference , Belief Propagation , Perturbed Systems
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 520.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial 2.5 Unported (CC BY-NC 2.5)
Identificadores
URI: http://hdl.handle.net/11336/59470
URL: http://advances.sciencemag.org/content/2/10/e1501638.full
DOI: https://dx.doi.org/10.1126/sciadv.1501638
Colecciones
Articulos(CCT - NOA SUR)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NOA SUR
Citación
Massucci, Francesco Alessandro; Wheeler, Jonathan; Beltrán Debón, Raúl; Joven, Jorge; Sales Pardo, Marta; et al.; Inferring propagation paths for sparsely observed perturbations on complex networks; American Association for the Advancement of Science; Science Advances; 2; 10; 10-2016; 1-9; e1501638
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES