Artículo
Towards a Recommender Engine for Personalized Visualizations
Fecha de publicación:
06/2015
Editorial:
Springer
Revista:
Lecture Notes in Computer Science
ISSN:
0302-9743
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Visualizations have a distinctive advantage when dealing with the information overload problem: since they are grounded in basic visual cognition, many people understand them. However, creating them requires specific expertise of the domain and underlying data to determine the right representation. Although there are rules that help generate them, the results are too broad to account for varying user preferences. To tackle this issue, we propose a novel recommender system that suggests visualizations based on (i) a set of visual cognition rules and (ii) user preferences collected in Amazon-Mechanical Turk. The main contribution of this paper is the introduction and the evaluation of a novel approach called VizRec that can suggest an optimal list of top-n visualizations for heterogeneous data sources in a personalized manner.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
Mutlu, Belgin; Veas, Eduardo Enrique; Trattner, Christoph; Sabol, Vedran; Towards a Recommender Engine for Personalized Visualizations; Springer; Lecture Notes in Computer Science; 9146; 6-2015; 169-182
Compartir
Altmétricas